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Abstract
This dissertation thesis is focused on formal verification of machine-code systems using
model checking with abstraction. The background and state of the art of machine-code
model checking are presented, and weaknesses of previous approaches are noted. The au-
thor’s research described in this dissertation thesis and previous conference proceedings
articles presents novel solutions to the major problems of previous research: the systems
are described in the Rust programming language and are inherently simulable, automati-
cally converted to verification equivalents and verified within a novel framework based on
Three-Valued Abstraction Refinement. Special care is taken to allow efficient verification
of variables based on bit-vectors. The author has created a formal verification tool imple-
menting the introduced techniques, and its performance is evaluated in the thesis. The
tool can be used to verify arbitrary finite-state digital systems, with a special focus on
systems with behaviour determined by machine-code programs. The created tool is free,
open-source, and publicly available.

Keywords:
Machine-code verification, translation of simulable descriptions, three-valued abstrac-

tion refinement, bit-vector domain

Abstrakt
Tato disertační práce pojednává o formální verifikaci systémů založených na strojovém
kódu pomocí techniky kontroly modelu s použitím abstrakce. Je prezentován současný
stav poznání v tomto oboru a je poukázáno na slabá místa předchozích přístupů. Autorův
výzkum popsaný v této disertační práci a předchozích článcích v konferenčních sbornících
prezentuje nové způsoby řešení problémů předchozího výzkumu: systémy jsou popsány
v programovacím jazyce Rust a samy o sobě simulovatelné, jsou automaticky konvertovány
do verifikačních ekvivalentů a verifikovány v originální konstrukci založené na zjemňování
trojhodnotové abstrakce. Pro účinnou verifikaci je speciálně zacházeno s proměnnými za-
loženými na bitových vektorech. Autor práce vytvořil nástroj pro formální verifikaci, který
implementuje představené techniky, a jeho schopnosti jsou v práci vyhodnoceny. Nástroj
může být použit pro verifikaci libovolných konečných číslicových systémů, se zaměřením
na systémy, kde je chování určeno programy ve strojovém kódu. Vytvořený nástroj je
bezplatně a veřejně dostupný, s otevřeným zdrojovým kódem.

Klíčová slova:
Verifikace strojového kódu, překlad simulovatelných popisů, zjemňování trojhodnotové

abstrakce, doména bitových vektorů
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Chapter 1
Introduction

The presence of bugs in programs for computers and embedded systems may have se-
vere consequences for safety, security, reliability, etc. Source-code-level and hardware-level
verification has been explored in great detail, resulting in applicable tools for formal ver-
ification. Machine code level, especially important for embedded systems with wide use
in safety-critical industries such as medical, automotive, and aeronautics, has not enjoyed
the study and availability of formal verification tools on such a scale.

Formal verification of machine-code systems is problematic due to a unique combination
of challenges: large state spaces, the loss of high-level information about the programs, and
the diversity of various processor architectures. In particular, the technique of abstraction
refinement is typically used in state-of-the-art tools for source-code and hardware systems
to reduce the state space size, but using it while allowing verification of machine code for
diverse processor architectures was previously not reasonably possible.

While there are publicly available tools for formal machine-code verification using the-
orem proving [1, 2], their use requires specialised knowledge and they are intended for
verification of programs for computers rather than for embedded systems. The tool Ar-
cade.µC [3, 4, 5, 6, 7] was devised for formal verification of machine-code programs for
embedded systems using model-checking with abstraction, but its development has been
since discontinued. In my diploma thesis [A.4], I created a tool inspired by Arcade.µC.
However, it was not well-usable in practice due to the aforementioned challenges.

Research goal. My overarching goal has been to resolve the outstanding problems
of formal verification of machine-code systems using model checking with abstraction by
providing a solid yet flexible theoretical groundwork for model-checking embedded systems
using abstraction refinement, allowing for flexibility in system specifications. I aimed to
ensure that the techniques are practically viable and available to use.

To achieve my goal, I devised three novel techniques, described them in publications
and implemented them in my publicly available, free, and open-source formal verification
tool machine-check1, a spiritual successor to my previous tool.

1The official website of the tool is https://machine-check.org. The current release at the time of
writing is 0.4.0, available at https://crates.io/crates/machine-check/0.4.0.
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1. Introduction

Thesis content. In this thesis, I comprehensively present the background of my work,
state of the art in formal machine-code verification, the techniques I devised, as well as an
experimental evaluation of the tool machine-check based on them. I was able to verify
that various specifications hold in bare-metal programs for the AVR ATmega328 micro-
controller using the tool. The techniques enable fully automatic verification in reasonable
time and memory without problems of the previous model-checking tools, substantially
improving the state of the art in formal verification of machine-code systems using model
checking with abstraction.

1.1 Contribution
I devised, described, and, where applicable, formally proved three novel techniques:

◦ Translation of simulable machine-code system descriptions. Previously, tools
for formal verification of machine-code systems were largely tailored to a specific pro-
cessor, and abstraction was managed manually, making the addition of new processors
and architectures highly complicated and time-consuming. I devised a scheme where
the processors are described in the programming language Rust and automatically
translated to their verification analogues at compile time using meta-programming.
I published an overview of the scheme [A.2].

◦ Input-based three-valued abstraction refinement framework. The usual ab-
straction refinement scheme is Counterexample-guided Abstraction Refinement (CE-
GAR), which cannot verify some system properties, importantly including whether
the system can recover to a specified state from any state. Properties such as recovery
can be verified using the stronger Three-valued Abstraction Refinement (TVAR), but
the previous abstraction refinement frameworks based on TVAR were problematic.
Therefore, I devised a novel framework based on TVAR that resolves the problems,
and proved that it can be used for formal verification of arbitrary properties of propo-
sitional µ-calculus. A preprint of my work is available [A.3].

◦ Three-valued bit-vector arithmetic. When using abstraction, the abstract do-
mains of system-state variables must be chosen, with a dramatic impact on verifica-
tion speed and the ability to prove or disprove properties. In machine-code systems,
there are cases where just one or two specific bits of a read input port influence
whether the property holds or not, meaning that storing the other bits is wasteful
and only contributes to exponential explosion [8]. Three-valued bit-vector abstrac-
tion solves this problem, but it was previously not possible to quickly compute useful
results of arithmetic operations using it. I devised a novel technique for computing
useful results in polynomial time, with the best possible results for addition and
multiplication computable in linear and quadratic time, respectively. I described,
formally proved, and published the technique together with my supervisor [A.1].
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1.2. Organisation of This Thesis

I implemented the techniques in my free and open-source tool machine-check. It is
able to verify properties of machine-code programs as well as any other systems that can be
described as finite-state machines. The required time and memory are reasonable for simple
programs, and the framework and its implementation are conducive to improvements in
abstraction and refinement strategies, paving the way to full formal verification of security-
and safety-critical systems, not just their hardware or source-code components.

While my research was focused on the machine-code level, the techniques are general
and of interest in other fields of formal verification, especially of source-code and hardware
systems. The input-based TVAR framework in particular is fully general and can be used
to verify properties not verifiable by current state-of-the-art tools, further supporting the
overarching goal of leveraging formal verification for greater security and safety.

1.2 Organisation of This Thesis
The dissertation thesis is organised into chapters as follows:

1. Introduction: Describes the contribution of my research.
2. Theoretical Background: Introduces the reader to the necessary theoretical back-

ground.
3. State of the Art in Digital System Verification: Surveys the current state of

the art in digital system verification, with emphasis on machine-code verification.
4. Translation of Simulable Machine-Code System Descriptions: Describes the

technique of translation of simulable descriptions used in my tool machine-check.
Contains previously published material [A.2] with further additions.

5. Input-based Three-valued Abstraction Refinement: Describes the idea of
Three-valued Abstraction Refinement with refinement of inputs and states, followed
by a framework formalisation, simpler than previous TVAR frameworks yet more
powerful than the commonly used CEGAR frameworks. It is proven that its impor-
tant characteristics, which make it suitable for formal verification, depend only on
fairly simple requirements. Contains material available as a preprint [A.3].

6. Abstract Three-valued Bit-vector Arithmetic: Describes a three-valued ab-
straction domain that is useful for digital (especially machine-code) systems, and
presents fast algorithms for addition and multiplication within the domain, with
proofs that they produce the best possible results. Contains previously published
material [A.1].

7. Created Machine-Code Formal Verification Tool machine-check: Describes
the combination of the techniques from Chapter 4, 5, and 6 and further considerations
for implementation of the formal verification tool that I created during work on this
thesis. Discusses an experimental evaluation of the tool on machine-code systems.

8. Conclusion: Summarises the results of my doctoral research, suggests possible topics
of further research, and concludes the dissertation thesis.

3





Chapter 2
Theoretical Background

The rise of digital electronic systems to ubiquity in our lives has brought a multitude
of challenges. Computing devices are no longer restricted to mainframes and personal
computers but are present in all kinds of aspects of our lives including medical devices,
home appliances, or toys. Most of us carry a mobile phone, and we rely on transport by cars,
trains, ships, and aeroplanes, all of them increasingly dependent on electronic control. All
aspects of our lives, including our security and safety, are reliant on the systems behaving
correctly. Nevertheless, just from July to August 2024 during the writing of this thesis,

◦ the outage caused by the CrowdStrike software glitch paralysed the global economy
and resulted in losses estimated in billions of dollars [9],

◦ the leading processor manufacturer Intel has responded to the instability of its 13th
and 14th generation processors, releasing a processor microcode update which is
supposed to fix incorrect voltage requests that result in processor degradation [10],

◦ a vulnerability was found in AMD processors including the current generation [11],
undetected for almost 20 years, allowing the planting of nearly undetectable malware
once kernel-level access is obtained [12].

While informal testing of systems can reveal some bugs, formal verification can definitely
prove or disprove that a given specification holds in a given system, preventing bugs that
arise from unconsidered corner cases. Unfortunately, it is much more problematic to for-
mally verify systems than to create them. Continual advances in formal verification are
necessary to prevent the consequences of bugs such as drastic monetary loss, data theft,
loss of privacy, and even human injury.

Formal verification is a wide field of computer science which overlaps with other fields
such as graph theory, automata theory, combinatorial optimisation, static program analy-
sis, and testing. As such, in this chapter, I discuss only topics of direct relevance to the
subject of this dissertation thesis. Related work that is only relevant to a single chapter
will be discussed in the respective chapter.

5



2. Theoretical Background

In this thesis, I focus on formal verification of machine-code programs against specifica-
tions. The main processors under consideration are simple embedded microcontrollers, the
programs are bare-metal, without any operating system layer. Machine-code verification
is especially sensible in this scenario, as source-code verification may not be able to verify
properties such as correct initialisation and usage of peripherals. Some parts of the program
may also be hand-written in assembly language to achieve maximum performance, preclud-
ing source code verification. Lastly, the compiler may contain bugs, resulting in possible
issues that are undetectable using source-level verification. The aforementioned concerns
make machine-code verification an important and irreplaceable avenue of approach.

For a comprehensive understanding of the task, there are three major areas to explore:

◦ The digital systems under verification, their levels (hardware, machine code, source
code), and commonalities shared by systems of all levels.

◦ The specifications for which we are trying to decide whether they hold in a given
system.

◦ The techniques for formal verification.

These areas are interrelated: the digital systems are usually formalised as automata, and so
the typical specification formalisms are based on states and paths through the automata.
The verification techniques are based on the formalised systems and specifications. Adher-
ence of finite-state systems to common temporal specifications can be verified in time and
space linear to the state space size, with further improvements possible through the use of
advanced techniques.

In this chapter, I will explore systems, fundamental approaches to formal verification,
and used specifications. After that, I will focus on formal verification using model checking
with abstraction and abstraction refinement, which is the approach I use in my research
and implementation of machine-check.

2.1 Digital Systems
As proven by Shannon [13], systems comprised of switching circuits can be used to solve
arbitrary problems specified in Boolean algebra by the construction of logic gates. The rise
of transistor technology, especially Complementary Metal-Oxide-Semiconductor (CMOS)
technology, has allowed us to construct systems with computation capabilities far over-
shadowing other kinds of systems. The systems are inherently parallel in nature, each
logic gate only dependent on the ones producing its inputs.

While electronic hardware systems can be designed to perform fixed computations with
great performance and little power consumption, the design and initial manufacturing
expenses for such devices are prohibitive for most applications. As such, programmable
devices are now commonly used as well. It is possible to group them into two categories,
notwithstanding System on a Chip (SoC) combinations:
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◦ Programmable Logic Devices (PLDs) are devices in which reconfigurable digital cir-
cuits can be configured to perform specified computations using basic elements such
as logic gates and flip-flops, similarly to building the digital circuits themselves. The
most complex of these devices are Field-Programmable Gate Arrays (FPGAs).

◦ Processors are devices that manipulate their state according to machine-code-program
instructions. This typically results in less parallelism, with sequential program flow
in each processor core. The programmer typically writes a source-code program in
a programming language such as C, which is then compiled to machine code that is
executed by the processor. Implementation-wise, processors implemented on a sin-
gle Integrated Circuit (IC) chip but requiring external circuitry (including memory
and storage) are typically called microprocessors, while fully integrated processors
with little external requirements are called microcontrollers. Processors can also be
implemented on FPGAs as soft processors.

Let us suppose that we want to create a digital system. We are only responsible for
designing a small part of the overall system, building on top of underlying components.
For example, in a machine-code system, we design the machine code that will be executed
on the selected processor and rely on the guarantees by the processor manufacturer that
it will perform as described in its accompanying documentation. We devise the machine
code based on these guarantees (not the physical device itself): without knowing anything
about the processor behaviour, the machine code is just a meaningless sequence of bits.

In this thesis, I will use the noun design to refer to the part of the system that is under
our control, and the noun guarantees to refer to the guarantees about the behaviour of the
underlying parts of the system outside of our control. The design and guarantees combine
to form the system. For verification purposes, the whole system must be considered, as
visualised in the block overview in Figure 2.1.

The digital system will ultimately be backed by a physical device that behaves according
to the physical reality. As such, there must be fundamental guarantees that the device
behaves digitally. During verification, we assume that all guarantees hold, as we are only
concerned with detecting problems where we are at fault, not problems arising due to the
given guarantees not holding in the actual device.

In case the design is described in a language with formal syntax and semantics, basic
guarantees are defined by the semantics of the formal language. However, there might be
additional guarantees.

Example 2.1.1. Let us consider that we are writing a source-code program in the C
language, and our compiler adheres to the C99 standard [14]. The language semantics
defined in the standard give us basic guarantees about how the program will behave once
compiled and executed, barring e.g. bugs in our compiler or a defective processor we will
be compiling or executing the program on. We can also use libraries, with which we com-
municate using Application Programming Interfaces (APIs), with additional guarantees of
their behaviour. When verifying our program, we take the source code we have written
and the guarantees (language semantics and API guarantees) into account.
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guarantees design

combine

system specification

verification
result

verify

Figure 2.1: A high-level overview of formal verification of digital systems. The solid yellow
cells represent verification inputs, while the dashed blue cells represent an automated
combination or result. The guarantees and the design are combined together to form the
system under verification. It is then determined if the specification holds.

2.1.1 Digital System Levels
In the vast majority of cases, a digital system can be placed into one of three separate
levels:

◦ A hardware system is a combination of the digital design described in a design lan-
guage, the basic guarantees provided by the design language, and possibly addi-
tional guarantees provided by e.g. Intellectual Property (IP) blocks. The design
language is typically a Hardware Description Language (HDL) such as VHDL or
Verilog. For formal verification, the systems are typically first translated to the
AIGER format [15, 16] that describes the whole system as a sequence of gates or
the Btor2 format [17] that describes the systems by bit-vectors and bit-vector ar-
rays, preserving operations such as addition or multiplication instead of translating
them to logic gate combinations. After translation, the guarantees are formed by the
AIGER/Btor2 format semantics.

◦ A machine-code system is a combination of the design in the form of machine code, the
basic executing processor guarantees, and possibly additional guarantees for e.g. cir-
cuits connected to the processor pins. For usage without an operating system, the
machine code is typically in the Intel HEX format [18]. For usage with operating
systems, the machine code is typically bundled with some additional information,
e.g. the Executable and Linkable Format (ELF) for Unix-like operating systems and
the Portable Executable (PE) format for the Windows operating system. Unfor-
tunately, the processor guarantees are usually not available formally1, the informal

1For some processor architectures, the situation is starting to change for the part of guarantees that
forms the Instruction Architecture Set (ISA), as noted in Section 3.1.
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documentation being provided in the form of the processor datasheet, the user man-
ual, the instruction set architecture manual, etc.

◦ A source-code system is a combination of the design in the form of source code
in a programming language, the basic guarantees provided by the semantics of the
programming language, and possibly additional guarantees provided by e.g. the APIs
of the used libraries. The programming languages can be standardised, as in the case
of the ubiquitous C99 standard [14], but their more difficult semantics are typically
described informally.

Some digital systems cannot be placed into a single level, such as source-code programs
with inline assembly which combine source-code and machine-code characteristics, but I
will not discuss them in this thesis for the sake of conciseness. Between the three levels,
there are two special system types that mix the characteristics:

◦ A bytecode system is a combination of the design in the form of bytecode for a Vir-
tual Machine (VM), basic guarantees provided for the VM, and possibly additional
guarantees. The bytecode serves as an intermediate stage before interpretation or
compilation on the target machine. The typical program bytecode is for the Java
Virtual Machine (JVM). LLVM IR (Intermediate Representation) is used as an inter-
mediate compilation stage for the LLVM compiler suite [19]. While the bytecode is a
sequence of bits similar to machine code, the system as a whole is much more similar
to a source-code system, with device-agnostic guarantees. Bytecode is sometimes
used for verification in place of source code due to similar expressivity but simpler
constructs.

◦ A microcode system is a combination of the design in the form of microcode and the
underlying hardware guarantees, implementing a processor that is supposed to exe-
cute machine code with the guarantees given by the processor manufacturer. Struc-
turally, the microcode system can be considered a machine-code system which serves
to provide a Virtual Machine for the higher-level machine code.

As this thesis is concerned with verification of machine-code systems, the other system
levels will be discussed mainly in the context of their commonalities in the next subsection
and of the state of the art in Chapter 3.

Example 2.1.2. Throughout this thesis, I will focus on AVR ATmega328P, a mid-line
8-bit microcontroller which is famously used in the Arduino Uno development boards.
The microcontroller integrates an 8-bit AVR processor core with 32 working registers and
additional Input/Output (I/O) registers together with 2048 bytes of Static Random Access
Memory (SRAM) that is used as data memory and 1024 bytes of Electrically Erasable
Programmable Read-Only Memory (EEPROM) that is used as program memory [20].

The hardware level of the microcontroller is known to the AVR processor manufacturer
Microchip (which has acquired the former manufacturer Atmel), but not to the general
public. The programs are usually written either in the C language (source code level) and
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compiled to machine code or in the AVR assembly language (that almost directly corre-
sponds to the machine-code instructions) and assembled to machine code. The Instruction
Set Architecture (ISA) description of the AVR architecture is publicly available [21].

Note 2.1.3. Digital systems can be described using many specific languages, such as mod-
elling languages (UML, SysML), simulation-oriented languages (Matlab-Simulink etc.), or
verification-specific languages [22]. However, these languages usually present some general
overview of the system, not a fully specified system that can be used in the real world.
In Chapter 3, I will discuss some languages for the formalisation of processor Instruction
Set Architectures (ISAs). These are generally not directly possible to compile nor formally
verify just using a standard compiler, requiring intricate translations to e.g. simulator pro-
grams or Automated Theorem Prover (ATP) formulas. I will show in Chapter 4 that it
is possible to describe digital systems using a general-purpose programming language and
still retain the ability to use advanced verification techniques.

2.1.2 Digital System Commonalities
The transition from hardware up to source code is essentially a transition from physi-
cal systems to systems that correspond to human (predominantly sequential) reasoning.
There are important commonalities between the systems, combining building blocks that
are physically efficient and those that are conducive to human reasoning. These common-
alities can be found by examining HDL languages, common processor architectures, and
imperative programming languages:

◦ Binary digits. While other bases such as ternary and decimal have enjoyed some
popularity in the past, the current digital systems are ubiquitously binary.

◦ Finite-width bit-vector variables. Unlike mathematical variables, the variables
refer to some over-writable physical memory location. Only finite-width bit-vectors
are physically implementable in the binary digital logic. They are used as basic
building blocks for describing real-world digital systems.

◦ Arrays and array indexing. Bit-vector arrays are ubiquitously used. In machine-
code systems, only a few arrays are exposed through the machine-code instructions,
typically including working registers and either the main memory (von Neumann
architecture) or the program memory and the data memory (Harvard architecture).
In imperative programming languages, only the main memory is exposed, and vari-
ables used to index into it are called pointers (typically treated differently from other
variables to prevent bugs).

◦ Fixed-point bit-vector operations. There are five basic types of almost uni-
versally available bit-vector operations: bitwise operations, bit-shift operations, bit
length manipulation operations, arithmetic operations, and relational operations.
Some operations (such as bit extension or division) are dependent on the interpre-
tation of the bit-vector, which is today almost universally treated as either unsigned
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or signed in two’s complement. The interpretation is chosen either by the variable
type (e.g. in typical imperative programming languages or VHDL numeric_std) or
by a special operation choice (e.g. the processor instruction type).

While bit-vectors do not perfectly correspond to the mathematical notions of numbers,
arithmetic operations can be performed using them if the distinctions are observed (e.g.
sizing the variables to prevent overflows). While the arithmetic and relational operations
are provided due to the need to perform arithmetic and comparisons in number-based
algorithms, the bitwise and bit-shift operations are provided because they are efficiently
implementable. The combination allows for a number of “hacks”, such as fast multiplication
and division by powers of 2 using bit-shifting [23].
Note 2.1.4. Floating-point operations are outside of the scope of this thesis. Common
processors and language implementations typically follow the IEEE 754 standard to a
certain extent. Floating-point variables can be described as bit-vectors and the operations
can be converted into bit-vector operations (soft floating point).

Example 2.1.5. In ATmega328P, the working registers, the data memory, and the pro-
gram memory are the most important bit-vector arrays. I/O addresses can correspond to
I/O registers or have special behaviour (e.g. reading digital values of microcontroller pins).
Typical instructions perform indexing (e.g. of two registers) and fixed-point operations us-
ing the indexed locations (e.g. adding the two registers and writing the result into one of
them, writing status flags afterwards). The arithmetic operations mostly operate on 8-bit
bit-vectors. Floating-point operations are not supported and must be emulated with soft
floating point if necessary. The instructions correspond closely to C operations on 8-bit
integers and are efficiently implemented in hardware, with most instructions executing in
one clock cycle.

The commonalities can be used to describe the system at another system level or even
automatically translate between the levels, adjusting the design to the new guarantees
so that the overall system behaviour remains the same. In my approach, the machine-
code system guarantees (mainly describing the processor behaviour) are described at the
source-code level in the Rust programming language, leveraging its advantages. This will
be elaborated upon in Chapter 4.

2.1.3 Program Execution Environments
A typical microcontroller- or microprocessor-based digital system is logically divided into
a processor core (or multiple cores), peripherals that communicate with the outside world,
volatile Random Access Memory (RAM) and non-volatile storage. In the simplest setting
(that nowadays occurs in embedded systems — that control devices from washing ma-
chines to spacecraft — rather than general-purpose computers), the processor executes a
single machine-code program loaded from the non-volatile storage, which can run for an un-
bounded period of time (in practice, until the system is powered off). The program directly
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interacts with processor peripherals, and is said to be running on bare metal: the processor
itself (its core, peripherals, etc.) forms the execution environment of the program2.

For user-operated computers, the limitation to a single program led to interpreters
of e.g. the BASIC programming language, where a user could write and execute their
own program. Unlike the interpreter, this program could terminate, returning back to
the interpreter, which is more consistent with the original idea of computer programs for
calculation as per Babbage and Turing. Interpreters as system-level programs were replaced
by operating systems such as Unix, MS-DOS, Mac OS, and Windows, which themselves
run as the system-level program and allow execution of other user-mode programs. In
modern operating systems, the user-mode programs are completely separated from the
processor peripherals and only interact with the execution environment in the form of the
processor ISA and operating system Application Binary Interface (ABI).

The differences between the program execution environments lead to differences in
verification mindset and parts of the systems considered. For conciseness, I will compare
bare-metal and user-mode programs. System-level programs (in normal operating systems,
system kernel and peripheral drivers) combine characteristics of both.

Termination. In bare-metal programs, there is no implicit notion of termination: the
machine-code instructions are simply executed forever by unless the processor explicitly
supports a switch to a different mode (e.g. sleep) and the program explicitly makes use
of this. On the other hand, a user-mode program running in an operating system can
terminate by performing a specified sequence of ABI operations.

Reasoning mindset. As a bare-metal machine-code program in an embedded system
cannot terminate by normal means, it supports a mindset based on automata theory,
where the system is an automaton that produces an infinite sequence of output symbols
(describing e.g. high or low voltages on output processor pins). On the other hand, a user-
mode program can (and is usually expected to) terminate at some point. This supports
a mindset based on program analysis, where the traditional task is to determine if a
program terminates and which outputs it produces depending on its inputs. Furthermore,
it is possible to write user-mode programs that contain no loops at all (performing some
calculation or task and terminating), while bare-metal programs must necessarily contain
at least one loop to ensure that the system will be useful for an unbounded period of time.

Description of guarantees. In general, for all machine-code programs, it is necessary
to describe the Instruction Set Architecture (ISA) so that the meaning of each executed
program instruction is clear. This is sufficient for the verification of machine-code-program
snippets that do not include any peripheral or ABI interaction. However, the peripheral or
ABI interaction determines the input-output behaviour of the program and thus is critical
for the verification of the program in full. For user-mode programs, the ABI is typically
well-defined for each combination of a processor architecture and operating system family
(e.g. x86, x86-64, AArch64 combined with Windows ABI or System-V ABI) and the system
calls for console I/O operations are not exceedingly difficult to describe. On the other hand,

2Here, considering the program to be the design as defined at the start of this section, the execution
environment is described by the guarantees.
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the peripherals for bare-metal programs vary drastically for each processor model and may
include complex state interactions, such as when the act of reading from or writing to one
memory address modifies other memory addresses.

The discussed differences have far-reaching consequences for the verification approaches
and system description choices, as will become apparent in Sections 2.2 and 3.1.

Example 2.1.6. In the ATmega328P datasheet [20], the system peripherals are described
on approximately 270 pages. Even the fairly straightforward General Purpose I/O (GPIO)
peripheral [20, p. 84-101] contains a subtle variation to functionality: reading from PINx
registers reads the value present on the affected pins while writing to them instead toggles
the bits in the corresponding PORTx register where the written value was 1 [20, p. 85]. This
behaviour must be preserved during verification, as I did in my description of ATmega328P
further discussed in Section 7.4.

2.1.4 Formalisation as Moore Machines
Digital systems can be formalised as general automata with outputs. In practice, con-
structable systems are always finite, and can be formalised by deterministic Moore or
Mealy Finite State Machines (FSMs): the system deterministically changes its state based
on the values of its inputs and its behaviour is reflected in its outputs. I will discuss the
Moore machine formalism as it is simpler.

Definition 2.1.7. A Moore machine M is a tuple M = (S, s0,Σ,Ω, δ, λ) where

◦ S is a finite set of states,

◦ s0 ∈ S is the initial state,

◦ Σ is the input alphabet, a finite set,

◦ Ω is the output alphabet, a finite set,

◦ δ : S × Σ→ S is the state transition function,

◦ λ : S → Ω is the output function.

The behaviour of the system is determined by the outputs of the successive states,
starting in the initial state and applying the state transition function with the selected
inputs. Dropping the requirements of finite S, Σ, and Ω, the resulting formalisation allows
for non-constructable systems as well, such as source-code programs with variables that
are unrestricted natural numbers. Programs that can terminate can be described as well,
by outputting termination in the terminating state and remaining there.

The formalisation captures the system behaviour but not the practical considerations.
Most notably, it is typically only necessary to consider the states and transitions reachable
from the initial state, as the others are irrelevant to system behaviour. The commonalities
from Subsection 2.1.2 are hidden in the definitions of S,Σ,Ω, δ, and λ, despite having an
important practical role in the speed of simulation and verification of the system.
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Note 2.1.8. This formalisation does not properly capture systems where incomplete guar-
antees are given. For example, the value in some register may not be specified after a
division by zero, or different cores of a multicore system can perform reads and writes in
an unspecified order. In such a case, we are technically not performing formal verification
of a single system but a set of systems that fulfil the guarantees. We would then want to
verify that all of the possible systems behave as required by the specification.

For common use-cases on single-core systems, it is enough to ensure that the incomplete
guarantees cannot affect the result of verification so that traditional reasoning about a
single system can be used. I will discuss how this is ensured in my tool machine-check
in Subsection 7.3.1. General reasoning with incomplete guarantees is outside the scope of
this thesis and is left for future work.

2.2 Fundamental Approaches to Formal Verification
The core task of programming and digital system design is implementing digital systems
so that they work as intended. However, experience teaches us that this is not an easy
task, and bugs crop up often. The easiest way to guard against bug is to try the system
out with some chosen inputs: this is usually called testing. In software parlance3, this can
be considered informal verification, able to find bugs but not to guarantee their absence.

Formal verification allows us to guarantee that there are no bugs in the system that
would make it violate the specification. While the implementing engineers typically use
their intuition or manual formal proofs for some parts of the system to ensure correspon-
dence to specification, formal verification techniques allow automation using computers.
This requires formalising both the systems and specifications. I will give a cursory, mostly
chronological overview of the development of the most fundamental approaches to formal
verification. More information can be found e.g. in historical perspectives of principal au-
thors [24, 25]. Introduced concepts most relevant to this thesis will be discussed in the
next section.

Formal verification of systems against specifications can be accomplished in a multi-
tude of ways. The most basic one is through manual proofs. However, that approach is
only realistic for very simple systems. Various approaches were devised for partially or
completely automated verification of programs and systems.

The most important early work in formal verification of programs was the work by
Floyd [26] and Hoare [27] in late 1960s, the introduced Hoare logic allowing verification
of partial correctness (if the program returns an answer, it is correct) and total correctness
(additionally, the program always returns). Notably, this reasoning is built on the theo-
retical concept of programs as algorithms (which can, and should, return) rather than as
systems (which have no concept of “returning”).

3In hardware parlance, testing determines whether the physical device matches the design (whether the
system is manufactured correctly), while verification concerns matching the design against the specification
(whether the system is designed correctly). In software, there is no manufacturing step.
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Dijkstra called for limiting the scope of programs and proving their correctness as they
are written in his 1972 Turing Award lecture [28]. While this is suitable for the most
critical systems, the additional design complexity precludes the use in typical programs.

In 1975, Dijkstra provided a reformulation of Hoare’s logic to predicate transformer
semantics, providing an effective algorithm to convert imperative-language programs with
assertions to formulas in predicate calculus [29]. Automated Theorem Provers (ATP) or
Satisfiability Modulo Theories (SMT) solvers can then be used to prove or disprove the
resulting formula. For programs with loops, loop invariants typically must be devised and
provided by the user. Dijkstra used the notion of weakest preconditions, which correspond
to the logic formula describing the program going backwards. The dual concept, describing
the program going forwards, corresponds to later-introduced strongest postconditions [30].

Predicate transformer semantics are directly related to symbolic execution which pro-
duces symbolic states and results of the program similarly to the states and results arising
from a standard program execution [31]. Traditional symbolic execution cannot formally
verify programs with arbitrary loops, however, due to infinite execution possibilities.

Dissatisfied the need to manually devise loop invariants in predicate transformer se-
mantics, Cousot & Cousot devised abstract interpretation inspired by compiler-related
techniques of data-flow analysis. The techniques they introduced allow fully automatic
verification of programs with loops [32].

The next breakthroughs came from research into concurrent programs and systems.
Pnueli [33] used previous research on modal logic to express specification properties such
as “eventually, ϕ will hold” or “from now on, ϕ will always hold”, which later formed
a type of temporal logic, the ubiquitous Linear Time Logic. In contrast to Pnueli, who
considered the specification in context of linear program flow, Clarke and Emerson [34, 35]
introduced the Computation Tree Logic logic based on the view of a branching tree of
program executions. Since their verification task was to check whether a state-transition
structure representing the concurrent system was a model of the specification, they called
the corresponding problem model checking.

The major fundamental approaches (Hoare logic, abstract interpretation, and model
checking) have enjoyed considerable popularity and extensions. It has also been shown that
there is a strong link between model checking and abstract interpretation: for example,
model-checking can resolve data-flow analysis in abstract interpretation [36]. While the
three approaches have been historically developed by largely separate communities, they
are becoming increasingly convergent [37, p. 2].

The most notable extensions to the approaches in the 21st century have been the intro-
duction of Counterexample-guided Abstraction Refinement (CEGAR) for model checking,
which will be discussed in Subsection 2.6.1, and separation logic, an extension of Hoare
logic allowing reasoning about program components that use shared data structures [38].

Note 2.2.1. In my research, I have focused on machine-code verification using model check-
ing, using the concepts from abstract interpretation for abstract domains where suitable.
I did not focus on Hoare logic in my research and thus will not discuss it further except
for its use in other tools introduced in in Chapter 3.
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2.3 Property Specifications
Fundamentally, if we capture the exact behaviour of the system as a machine as per
Subsection 2.1.4, we can try to prove or disprove (i.e. formally verify) any property of
the system (model checking in the original mathematical meaning). However, formally
verifying predicate calculus properties with respect to the machines automatically is
problematic for two reasons:

◦ Proving in reasonable time and memory. Trivially, proving or disproving that
finite specifications (of finite length and with finite quantified variables) hold in finite
systems can be accomplished in finite time and with finite memory using brute force.
However, the amount of reachable states tends to grow exponentially to the input
size, and verifying the specification can introduce further slowdowns. Furthermore,
checking the properties of infinite paths is even more problematic.

◦ Specifications difficult to express in predicate calculus. In the specifications,
we typically are concerned about properties of system states and paths through the
system that might not be intuitive to express in predicate calculus.

For practical model-checking, it is useful to write the specifications in some temporal logic
instead. A temporal logic forms a useful, well-defined set of formulas with respect to the
system under verification, referring not only to individual states but also to paths, which
are typically infinite. They are a good compromise between the vast expressiveness of
predicate calculus and low complexity of model-checking algorithms. Formulas of common
temporal logics can be directly translated to predicate logic formulas.

The most important temporal logics in formal verification are Computation Tree Logic
(CTL), Linear Time Logic (LTL), and CTL*, of which CTL and LTL are subsets. For
conciseness, I will define CTL* first and then introduce CTL and LTL using it.

Definition 2.3.1. A CTL* property is a logical formula consisting of either an atomic
proposition or a logical operator combining other CTL* properties. There are three kinds
of such operators in CTL* [39, p. 7-10]:

◦ Propositional logic operators. Typically, these are ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ ⇒ ψ,
ϕ⇔ ψ.

◦ Temporal operators. These operators encode the desired behaviour on an infinite
path through the system. There are five such operators:

– X ϕ (next). The property ϕ has to hold at the next state of the path.
– Gϕ (globally). The property ϕ has to hold in every state on the path.
– Fϕ (f inally). The property ϕ has to hold in some state on the path.
– [ϕUψ] (until). The property ϕ has to hold until ψ holds (not including the first

state where ψ holds), and ψ must hold in some state on the path.
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– [ϕRψ] (release)4. The property ψ has to hold before and during the first state
in which ϕ holds, but ϕ does not have to ever hold (in which case, ψ must hold
forever). In other words, ϕ releases ψ.

◦ Path quantifiers. These operators encode the quantification of paths from a given
state.

– Aϕ (along all paths, inevitably). The property ϕ must be true in all paths from
the given state.

– Eϕ (there exists a path, possibly). The property ϕ must be true in at least one
path from the given state.

For evaluation, the CTL* formula is implicitly enclosed by an along-all-paths quanti-
fier if necessary (i.e. there exists a temporal operator not enclosed by a path quantifier),
similarly to implicit universal quantification of free variables in predicate calculus. The
resultant formula can be evaluated on arbitrary states of the system under verification.
When a system with multiple initial states is considered, the usual requirement is that the
property must hold in all initial states to hold in the system itself [40, p. 57; 41, p. 392].

Example 2.3.2. Some of the more notable CTL* formula schemes are:

◦ Safety. AG[ϕ], i.e. on all paths, ϕ holds forever.

◦ Reachability. EF[ϕ], i.e. on some path, a state where ϕ holds is reached.

◦ Recovery. AG[EF[ϕ]], i.e. from every reachable state, there exists a path to a state
where ϕ holds. In other words, we can always somehow coerce the system to reach a
state where ϕ holds.

◦ Invariant lock. AG[ϕ⇒ AG[ϕ]], i.e. once ϕ holds, it holds forever.

◦ Action-reaction. AG[ϕ⇒ AF[ψ]], i.e. once ϕ holds, ψ must hold in that state or
some successive state.

Note 2.3.3. Safety and reachability can be used for verification of each other: if a signifies
the state is a safe state, the system is safe exactly if all states are safe (AG[a]) and, dually,
the system is unsafe exactly if an unsafe state is reachable (EF[¬a]), meaning that it is
safe exactly if ¬EF[¬a].

As stated previously, the two most ubiquitous subsets of CTL* are CTL and LTL:

◦ In CTL, the path quantifiers and temporal operators can only come in pairs in that
order, e.g. AGϕ or E[ϕUψ]. In essence, CTL allows posing statements about the
current state and states following it, but not arbitrary paths.

4In some literature, the release operator is not included in CTL* and its subsets, simplifying the
definition at the expense of losing operator duality. Alternatively, [ϕRψ] can be thought of as an alias for
¬[(¬ϕ)U(¬ψ)].
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◦ In LTL, no path quantifiers are permitted in the formula, the only one being the
implicit along-all-paths quantifier. For example, the LTL formula FGϕ could be
more clearly expressed in CTL* as AFGϕ [39, p. 9]. In essence, LTL describes each
path through the state space separately, and the result is whether this description
holds for all paths.

Each CTL* property can be translated into an equivalent formula of the (stronger) predi-
cate µ-calculus [42, p. 907]. While the proofs in Chapter 5 are general enough for arbitrary
µ-calculus properties, I will not discuss µ-calculus in detail as it is less understandable than
classic temporal logics and it is not easy to find interesting properties expressible in it but
not in CTL*.

Specifications in Hoare logic. In contrast to model checking, Hoare logic supports
specifications expressed by arbitrary predicate calculus formulas at the expense of reduced
automation. Partial correctness claims that if the program terminates, the execution fulfils
the postcondition formula given the preconditions. Total correctness furthermore requires
that the program always terminates. Total correctness is powerful enough that properties
in linear-time temporal logics can be verified using it by encoding them to Hoare logic [43],
but branching-time properties are generally not considered.

2.4 Formal Verification Using Model Checking
For finite-state state-transition systems, the model-checking approach can be used to prove
or disprove the properties completely automatically. In the most basic view, the state space
of the finite-state system is constructed and the properties are verified against the state
space instead of the original system [39, p. 1-3]. This allows for completely automatic
verification of the system in finite time and memory.

Unfortunately, while model checking seems excellent in theory, there are two main
practical challenges encountered [39, p. 3-4]:

◦ Scalability. While the time and memory needed for model-checking is finite, in
practice, it is infeasible to model-check all but the simplest systems without using
advanced techniques. This is mainly due to the exponential explosion during the
construction of the reachable state space (also termed state space explosion): in each
state, N input bits result in up to 2N successor states being generated.

◦ Modelling. The classic model-checking formalisms essentially verify whether tem-
poral logic specifications hold in finite-state machines. The modelling challenge is to
fully capture many possible systems of interest, including unbounded systems and
differently descriptive specifications (i.e. real-time logics).

The scalability and modelling challenges are subjects of ample research [39]. Both are
major challenges to machine-code verification, although the modelling challenge is present
mainly in the practical rather than in the theoretical sense, as the classic model-checking
formalisms capture the nature of digital systems well.
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Figure 2.2: An example Kripke structure. This example will be reintroduced in Chapter 5.

2.4.1 Classic Model-Checking Formalisms
I will now introduce the classic formalisms for formal verification using model checking [39].
The name model checking is taken from mathematical logic: we are checking whether the
formalism of the system, a Kripke structure K, is a model of the specification ϕ, i.e. whether
all sentences in ϕ are true with respect to K. The fact that K is a model of ϕ is usually
written as K |= ϕ, and that fact that it is not is written as K ̸|= ϕ. The model-checking
tool, given K and ϕ, ideally outputs either K |= ϕ or K ̸|= ϕ (and perhaps some additional
information such as the reasons for that result). In practice, it also may not give us any
answer at all, such as when verification time or memory is exceeded.

Definition 2.4.1. A Kripke structure over a set A of atomic propositions is defined as a
tuple K = (S, S0, R, L) where

◦ S is the set of states,

◦ S0 ⊆ S is the set of initial states,

◦ R ⊆ S × S is a transition relation,

◦ L : S × A → {0, 1} is a labelling function, which determines whether each atomic
proposition holds in a state or does not.

Note 2.4.2. I use the Kripke structure definition with initial states throughout this thesis
for correspondence with real-life digital systems. Some definitions omit the initial states.
I use a characteristic labelling function instead of the more common definition L : S → 2A

for easier formalisation of abstraction in Section 2.6.

Example 2.4.3. Figure 2.2 shows a Kripke structure with S = {000, 001, . . . , 111}, S0 =
{000}, R = {(000, 001), (001, 010), (010, 010), (010, 110), (110, 110), (110, 010), (000, 011),
(011, 111), (111, 101), (111, 100), (100, 101), (101, 101)}. L labels the atomic proposition
msb representing the most significant bit in states {000, 001, 010, 011} as 0, and in {100, 101,
110, 111} as 1.

The Moore machines from Section 2.1.4 can be easily turned into Kripke structures by
replacing the output function with the labelling function (which may expose the internal
state of the machine as well as the outputs), and turning the state transition function into
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a relation by considering all input possibilities. The major insight here is that the actual
input values are unnecessary for computing the verification result. However, as discussed
later in Chapter 5, the inputs become relevant again when we are trying to determine what
caused the result.

In classic model checking, the Kripke structure is checked against a CTL, LTL, or CTL*
property. Although these temporal logics work with infinite paths, there are algorithms
that can verify their properties in a reasonable time:

◦ CTL. Running time depends linearly both on the size of K and the length of the
CTL formula [39, p. 11].

◦ LTL. Running time depends linearly on the size of K and exponentially on the length
of the LTL formula [39, p. 13].

◦ CTL*. The algorithms for CTL and LTL can be simply combined [40, p. 69],
resulting in running time depending linearly on the size of K and exponentially on
the length of the CTL* formula, the same as for LTL.

As the size of K is the major limiting factor, the ability to verify in time linear to it is
crucial, explaining the popularity of CTL, LTL, and CTL*. The state space explosion
becomes the main problem.

Example 2.4.4. Let us consider formal verification of ATmega328P using naïve model
checking. The I/O registers are reset during the device reset [20, p. 56], but the 32 work-
ing registers and 2048 SRAM bytes are not and may contain any value. The number of
possibilities after reset is 22048+32 = 22080, which results in infeasibly many initial states.
Even ignoring the initial possibilities does not save us. The General Purpose Input/Output
peripheral allows reading of up to 8 binary pin values during single instruction execution.
Reading four times in succession to different working registers produces (28)4 = 232 com-
binations. Clearly, naïve model checking is not suitable for machine-code verification.

2.5 Advanced Techniques for Model Checking
As the state space explosion precludes verification of complex systems, advanced techniques
have been devised to verify the system without constructing and model-checking the whole
Kripke structure. Such techniques can be roughly classified in three groups [39, p. 15-18]:

◦ Abstraction is an approach where, instead of model-checking the original Kripke
structure K, an abstract structure K̂ with less information is model-checked. The
result is either the same as for the original structure or is unknown due to the lack of
information. As an unknown result is not useful, abstraction refinement can be used
to keep adding information to K̂ where it is necessary for verification until a definite
result of model-checking is obtained.
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◦ Symbolic methods avoid construction of the Kripke structure by using symbolic
logic expressions to represent states and/or transitions, essentially compressing the
state space by using a more compact representation. There are two main symbolic
method subgroups:

– Model checking with Binary Decision Diagrams (BDDs). Useful especially for
low-level hardware circuits described by Boolean expressions where they can
dramatically reduce state space size while retaining the verification complexity,
but problematic to use with arithmetic expressions due to the reintroduction of
exponential explosion.

– Model checking based on solving the Boolean satisfiability problem (SAT) and
its extensions. The system and the specification are encoded into SAT formulas
that are solved by general SAT solvers. This approach allows the separation
of describing the systems from the actual verification, which is reduced to a
combinatorial problem. LTL or ACTL* formulas can be verified by SAT solvers5.
For CTL and its supersets, the stronger Quantified Boolean Formula (QBF)
solvers are necessary.

◦ Structural methods exploit the structure of the code that defines the system. The
structural methods are usually associated with parallel systems or complex reasoning,
using symmetries, partial orders, or other higher-level information to avoid storing
the whole Kripke structure.

In practice, the groups of approaches tend to be combined. In particular, symbolic
methods and abstraction are very conducive to combination since they are cleanly sepa-
rated: the symbolic methods are applied once the system is abstracted. In fact, the widely-
used Counterexample-Guided Abstraction Refinement (CEGAR) methodology was origi-
nally described as used with BDDs [44] and later extended for use with SAT solvers [45].
The SAT solvers themselves have evolved to Satisfiability Modulo Theories (SMT) solvers,
which support solving formulas with e.g. bit-vector or mathematical integer variables in
addition to Boolean variables.

Example 2.5.1. An example of a Binary Decision Diagram is shown in Figure 2.3. The
table with 16 single-bit values indexed by four bits is stored using a tree structure. The
value is determined by starting at the root node with indexing bit A and taking the
left or right child according to the current node variable until a leaf node is reached,
which determines the result value. This means that the example BDD returns 1 exactly if
(A = 1∧B = 1)∨C = 1∨D = 1. This is useful for model checking as sets of states can be
represented and manipulated using BDDs effectively, especially when bitwise operations
are used.

5This is only generally possible for systems with left-total transition relations, as discussed by Dams
& Grumberg [41, p. 392-393]. Fortunately, this includes practical digital systems.
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Figure 2.3: An example of a Binary Decision Diagram (BDD), of the classic Ordered
Binary Decision Diagram type. The non-leaf nodes are shown as yellow circles and the leaf
nodes are shown as blue squares. Each non-leaf node has two children, where the left child
(dashed) corresponds to the node variable having the value 0 and the right child (solid)
corresponds to the node variable having the value 1.

For my core use-case of machine-code verification, the use of abstraction is key to
reasonable state space sizes. Symbolic methods can be used with abstraction, and they
are well-researched [46, 47], but their use is mostly an implementation decision rather than
a fundamental concept in a verification tool. I did not feel the need to use structural
methods at this point as they are most useful when some kind of parallelism is introduced,
and non-parallel machine-code programs are problematic enough as-is. As such, I have
focused on abstraction in my work, and will not discuss the other groups of techniques
further except where used in the other tools discussed in Chapter 3.

2.6 Abstraction and Abstraction Refinement
The ideal process of model-checking can be represented as a function Pϕ : K → {0, 1}
where K is the set of all Kripke structures containing the atomic propositions present in
the specification ϕ. For every K ∈ K, Pϕ(K) = 0 means that the model-checker determined
K ̸|= ϕ, and Pϕ(K) = 1 means it determined K |= ϕ. We can extend the process to model-
checking Kripke-like structures that can lack some of the original information, representing
the incomplete model-checking process by P̂ϕ : K̂→ {0, 1,⊥}, where the results 0, 1 behave
the same as previously and ⊥ (unknown) means nothing was proven or disproven due to
the lack of information6. The three distinct valuations 0, 1, ⊥ give rise to three-valued
logic, which will be discussed in more detail later in Chapters 5 and 6.

6Not being to able to prove or disprove due to the lack of information in K̂ is different than not
being able to prove due to e.g. the model-checker being terminated due to exceeding time or memory.
The former gives us useful information about K̂, while the latter gives us nothing at all, and is thus not
formally considered.
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Abstraction in model checking consists of devising an incomplete structure K̂ for ver-
ification and verifying properties of K using it. The abstraction should be sound, never
producing wrong results:

P̂ϕ(K̂) ̸= ⊥ ⇒ P̂ϕ(K̂) = Pϕ(K). (2.1)

While it may be infeasible to compute Pϕ(K) in practice, devising K̂ and computing
P̂ϕ(K̂) can be easier as K̂ can contain less information and have fewer reachable states.
The obvious problem is that if P̂ϕ(K̂) = ⊥, we have not learned anything useful about K,
only that K̂ is not a good enough abstraction for our purposes. This problem is resolved
by abstraction refinement, where, after computing P̂ϕ(K̂) = ⊥, we refine K̂ to contain
more information, and continue until P̂ϕ(K̂) ̸= ⊥. This refinement loop forms the core of
abstraction refinement frameworks, which we design to be sound and, optionally, complete,
always verifying that the specification either holds or does not in finite time and memory
for finite systems and specifications.

Example 2.6.1. Continuing in the example of verification of machine-code programs for
AVR ATmega328P, we can represent each bit in a bit-vector by one of three values, ‘0’
(definitely zero), ‘1’ (definitely one), or ‘X’ (unknown — possibly zero, possibly one),
forming three-valued bit-vector abstraction (discussed further in Chapter 6). Representing
each uninitialised or input bit by ‘X’, we can start with a single abstract state that has
all working registers and SRAM locations unknown, and representing all step inputs as
unknown as well, produce a single abstract state in each processor step, ending up with
a lasso-shaped state space. Unfortunately, as the step function is required to preserve
soundness, the result of verifying properties that are dependent on inputs will be unknown,
rendering the abstraction fairly useless. It is necessary to choose the abstract bits that will
be turned to ‘0’ and ‘1’ possibilities, increasing the amount of information at the cost of
increased state space size. Using abstraction refinement, we can choose the bits of interest
deductively, without any outside help.

2.6.1 Methodologies
Now that the basic notions are in place, we can discuss the abstraction refinement method-
ologies. While Chapter 5 contains a more comprehensive and formal description of common
abstraction frameworks based on the methodologies, I will give a basic overview based on
Dams and Grumberg [41] here.

First, I will consider that the commonly used existential abstraction is used, where the
abstract states of K̂ are related to the concrete states of K by a concretization function
γ : Ŝ → 2S. In essence, an abstract state represents that the concrete system might be
in any of the concrete states given by the concretization function. For conciseness, I will
write that the abstract state covers a concrete state in if it contains it in its concretization.
Similarly, I will write that a path of abstract states covers a path of concrete states exactly
if, in each position, the abstract state covers the concrete one.
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Counterexample-guided Abstraction Refinement (CEGAR). The introduced
abstract structure K̂ is a Kripke structure but has a very different meaning compared to
K. The states of K̂ are abstract states. The transitions present in the transition relation R̂
of K̂ give no useful information as they may or may not correspond to concrete transitions
between the concrete states covered by the endpoints. However, it is required that the
transitions in the complement of R̂ do not correspond to any such concrete transitions, i.e.

∀(ŝhead, ŝtail) ∈ (Ŝ × Ŝ) \ R̂ . ∀(shead, stail) ∈ γ(ŝhead)× γ(ŝtail) . (shead, stail) ̸∈ R. (2.2)

Additionally requiring covering each state in S0 by at least one state in Ŝ0, the set of paths
in K is overapproximated by the set of paths in K̂. Each path in K is covered by some
path in K̂ but a path in K̂ can cover zero paths in K. It is desirable (and usual) to keep
R̂ minimal under this condition while making sure to compute it efficiently [45].

Assuming that R is left-total7, the temporal properties expressible in LTL or the univer-
sal fragments of CTL, CTL*, and propositional µ-calculus (the universal fragment essen-
tially precludes existential quantifiers when the property is expressed in negation normal
form) depend only on the set of paths, so we can use K̂ |= ϕ to conclude K |= ϕ. However,
it is not possible to use K̂ ̸|= ϕ to conclude K ̸|= ϕ, as the counterexample path may not
be contained in the set of paths in K (it may be spurious). However, we can overcome the
problem by using the following refinement loop:

1. Model-check K̂ instead of K. If K̂ |= ϕ, conclude that K |= ϕ: as the aforementioned
properties are violated by paths and K̂ covers all paths in K, the property must hold
in K when it does in K̂.

2. We know that K̂ ̸|= ϕ. Obtain a path that violates the property in K̂ (the coun-
terexample) and validate if it violates the property in K as well. If it violates the
property in K, conclude K ̸|= ϕ, providing the counterexample.

3. We know that K̂ ̸|= ϕ, but the counterexample for K̂ is not a counterexample for K
(it is spurious). Refine K̂ somehow, so the abstract paths ideally cover fewer concrete
paths, and go back to Step 1.

The core CEGAR methodology can be implemented in various ways, not dictating
the choice of the abstract state space beyond existential abstraction nor the choices of
refinement. However, it cannot verify properties such as the recovery properties discussed in
Example 2.3.2, because they contain both universal and existential quantifiers in negation
normal form.

Three-Valued Abstraction Refinement (TVAR). The TVAR methodology al-
lows verification of full propositional µ-calculus and its fragments such as CTL*, CTL,
and LTL. For K̂, extensions of Kripke structures are used. A Partial Kripke Structure

7If the transition relation in K is not left-total, there are some implicit existential characteristics in
the universal fragment of CTL* and some of its subsets [41, p. 392-393]. Fortunately, digital systems
expressible as automata have left-total transition relations (there is always at least one next state).
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(PKS) introduces the possibility of state labellings being unknown, which means there is
a possibility of an unknown result of model-checking K̂, in which case K̂ is refined. A
Kripke Modal Transition System (KMTS) structure further introduces the possibility of
transitions having an unknown presence.

Unfortunately, as TVAR is not limited to specification with path counterexamples, the
algorithms for verification tend to be more complicated, and it is not as easy to provide a
counterexample when a property is violated. The TVAR frameworks and structures will
be explored in detail in Chapter 5.

2.6.2 Abstraction Domains
To properly and effectively leverage abstraction, we need to decide how the system will be
abstracted, keeping the number of reachable abstract states low but with enough informa-
tion needed to verify the properties. In practice, it is also necessary to be able to compute
the transition function for the abstract states reasonably fast.

Digital system states are typically composed of separate variables. We can assign
abstract domains to the variables to form the abstraction. There are two general groups
of abstract domains, non-relational and relational. We are mostly interested in bit-vector
domains since bit-vectors are commonly used in digital systems, as previously discussed in
Subsection 2.1.2.

The abstract domains can be considered using various underlying formalisms. For model
checking with abstraction refinement, existential abstraction is sufficient, but it is common
to describe domains using abstract interpretation, which extends existential abstraction
and allows using additional algorithms.

In non-relational domains, each variable is considered separately. Some examples of
domains for bit-vectors are:

◦ Constant domain. The abstract bit-vector either has a constant value or can have
any value (⊤).

◦ Sign domain. Only the signedness of the bit-vector in the two’s complement is
retained. Zero can be treated as a special value as well, and any possibility (negative,
zero, positive) is represented by ⊤, resulting in the abstract value being represented
by {−, 0,+,⊤}. Other variations are also possible, e.g. also considering non-negative
and non-positive abstract values.

◦ Interval domain. The abstract bit-vector value is restricted to some interval. This
requires interpreting the bit-vector value as a number, differing depending on whether
we consider it to be signed or unsigned. Problematically, signedness may vary de-
pending on the machine-code instruction or hardware operation, leading to research
into wrap-around arithmetic [48].

◦ Three-valued bit-vector domain. Each bit of the bit-vector is considered as sepa-
rate, expressed in three-valued logic. This domain is discussed in detail in Chapter 6.
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Relational domains allow expressing relationships between variables, such as the oc-
tagon abstract domain [49]. The richest abstraction domain is predicate abstraction
[50, 51, 52], where the abstract states retain information about whether some chosen pred-
icate calculus formulas hold in them.

Note 2.6.2. The common formalism for abstract model-checking is that of lack of infor-
mation, using the symbol ⊥ for no information. However, the common formalism for
abstraction domains, coming from program verification and abstract interpretation, is that
of possibilities, using the symbol ⊤ for all possibilities. These formalisms are dual and
both correspond to the third value in three-valued logic.

The choice of a suitable domain is heavily dependent on the system and the verified
property8. While a more descriptive abstraction may reduce state space explosion, its
effectiveness may be limited due to slower computation of transitions.

It has been previously observed that a major exponential explosion in formal verification
of machine-code programs occurs when reading the General Purpose Input/Output (GPIO)
port values [3, 8, 5], an instance of this phenomenon already discussed in Example 2.4.4.
The most suitable domain for resolving this problem is the three-valued bit-vector domain,
which I decided to use in my diploma thesis [A.4]. However, it was previously not possible
to perform arithmetic operations in the three-valued bit-vector domain without exponential
explosion within the operation, leading me to devise new algorithms that solve this problem,
as described in Chapter 6.

Note 2.6.3. I conducted some preliminary research into interval abstraction for machine-
code verification, but it is not integrated into my tool machine-check yet. While I think
that it is worthwhile to use other abstraction domains in addition to the three-valued
bit-vector domain, they are outside of the scope of this thesis.

2.7 Summary
In this chapter, I discussed digital systems with a focus on verification and introduced three
system levels: hardware, machine-code, and source-code. I noted that there are common-
alities between system levels, especially the use of bit-vector and bit-vector array variables
with their respective operations, motivated by bringing together physical efficiency and
usefulness to humans. I discussed how digital systems of all levels can be formalised as
Moore machines (or their non-finite equivalents).

I listed the main fundamental approaches to formal verification (Hoare logic, abstract
interpretation, and model checking), focusing on the timeline of their introduction and
the problems they were originally devised to solve.While developed largely separately, the
approaches have been increasingly convergent. I discussed why standard predicate logic is
not used for formal verification using model checking, noting the problems with feasibility

8If we had an oracle that could always choose the domain resulting in the quickest verification with a
non-⊥ result, verification would be quick and there would be no need for abstraction refinement.
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and difficulty of expression of temporal properties in predicate logic. I then introduced the
common temporal logics CTL*, CTL, and LTL.

Having introduced the systems and the specifications they are verified against, I in-
troduced the approach of model checking in more detail and defined the classic formalism
based on Kripke structures. I introduced the three major groups of advanced model-
checking techniques, focusing on the abstraction refinement and noting that there are
two methodologies for it, Counterexample-guided Abstraction Refinement (CEGAR) and
Three-valued Abstraction Refinement (TVAR). CEGAR can verify LTL properties, but
not all CTL or CTL* properties. TVAR can verify all CTL*, CTL, and LTL properties.
The choice of abstraction domains is of crucial importance for efficient verification as well.

While I am focusing on formal verification via model checking, other tools for machine-
code verification have been also devised using the other approaches, as will be described
in Chapter 3. After discussing the state of the art, I will present the techniques that I
devised during my studies in Chapters 4, 5, and 6, culminating in a odiscussion of my
created tool machine-check that uses the techniques and a comparison to the previous
tools in Chapter 7.
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Chapter 3
State of the Art in

Digital-System Verification

By comparing the state-of-the-art formal verification tools for hardware, source-code, and
machine-code systems, we can discover how the differences in the system levels result
in differences in approaches taken to describe and verify the systems. I will focus on
freely available verification tools where possible. Even though the basic techniques used
in commercial tools may be similar to the ones in the freely available tools, the details are
not well-known.

3.1 Machine-Code Systems
I identified three major, largely unconnected directions of research into formal machine-
code verification. I will summarise the directions here and discuss them in the following
subsections:

◦ Formal verification of simple embedded systems using model checking. It is possible
to handle loops fully automatically and verify complex temporal properties at the
danger of easily occurring exponential explosion preventing verification. Exemplified
by the Arcade.µC tool [3, 4, 5, 6, 7].

◦ Machine-code program analysis, especially using abstract interpretation, used for de-
compilation and formal verification of user-mode executables for personal computers.
Exemplified by the CodeSurfer/x86 tool [53, 54, 55].

◦ Formal verification of machine-code snippets by translation to Hoare or similar logic
formulas followed by proving properties via Automated Theorem Provers (ATP).
Only safety properties are typically considered, and verifying programs with loops
requires manual help from the user or is not supported at all. Exemplified by the
Islaris [56, 1] and Serval [57, 2] tools.
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As this thesis is concerned with machine-code verification using model-checking with ab-
straction, the first direction is the most relevant, inspiring the techniques used in machine-
check. The direction using automated theorem proving is currently the most active and
may be a good source of inspiration for future work.

It will be seen that in all directions, after initial attempts, the researchers tend to
determine it is necessary to construct a language for describing the processor Instruction Set
Architecture (ISA), and in the case of embedded system verification, also the peripherals.

3.1.1 Model-Checking Direction
A formal verification tool for embedded systems HOIST was described by Regehr and
Reid [58], and used for stack size estimation [59]. The tool essentially builds abstract
Binary Decision Diagrams from the results of instructions of an embedded processor or
its simulator. Unfortunately, this results in high time and memory requirements, making
the technique costly for 8-bit and infeasible for 16-bit or 32-bit processors. Abstraction
refinement was not needed for Regehr and Reid’s use-case of stack size estimation but
presumably would have been necessary for verifying arbitrary properties.

The Estes model checker was introduced by Mercer and Jones [60]. Estes used the gdb
debugger to step through processor states and thus theoretically could support multiple
processor models as long as gdb supported them. However, in practice, extensive changes
were necessary to adapt the debugger to model checking on the Motorola 68hc11 processor.

The StEAM model checker was introduced by Mehler [61]. It did not perform ver-
ification for specific hardware but compiled a C/C++ program under verification to the
Internet Virtual Machine (IVM). It could be also considered a bytecode verification tool
but was considered to be a machine-code verification tool by Mehler. The approach did
not become popular in practice, presumably due to the fact that it reduces the amount of
high-level information available in the source code, making verification harder.

The model checker that inspired machine-check the most was Arcade.µC (previously
[mc]square), developed at the RWTH Aachen University. It was introduced in 2006 by
Schlich and Kowalewski [3]1, and built the state space directly using a custom simulator
written for a specific processor, checking CTL formulas, with special handling of nonde-
terminism to prevent state space explosion. Arcade.µC was developed to use abstraction
techniques using three-valued bit-vectors [8], including delayed instantiation of the variables
after masking of inputs by logical instructions so that state-space explosion is mitigated [4].
Subsequent versions of Arcade.µC introduced static analysis techniques, enabling more
efficient verification at the cost of further need for custom tailoring of the verifier to the
processor [5, 6]. Interval abstraction was also added, working in concert with three-valued
bit-vector abstraction to provide a further reduction of the abstract state space [62].

To reduce the difficulty of adding new microcontroller types and architectures to Ar-
cade.µC, synthesis of state space generators was developed in 2014 by Gückel [7]. This

1The paper [3] also mentions a previous machine-code model-checker MCESS. The model-checker seems
to be developed in a single diploma thesis, the text of which I was unable to procure. It seems MCESS
was not developed further.
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approach was not entirely successful as Gückel was unable to implement abstraction in such
a way that would not require the description writer to tailor the description to it [7, p. 121].
In the end, the work on verification of microcontroller machine code using Arcade.µC was
abandoned in favour of verification of Programmable Logic Controller (PLC) programs,
which are typically much simpler. To my knowledge, Arcade.µC never supported ab-
straction refinement, though its successor Arcade.PLC implemented CEGAR [63]. Fur-
thermore, while Arcade.µC used three-valued bit-vectors for abstraction [8], it was not
possible to compute arithmetic operations in the abstraction, forcing exponential explosion.

In 2021, I created a C++ tool for verification of deadline specifications for my master
thesis [A.4], using abstract state space and limited support for refinement, inspired es-
pecially by Arcade.µC. The tool used a special description language for processors and
supported verifying whether an action ϕ is necessarily followed by a reaction ψ in a given
time, as in AG[ϕ → AF ψ] but with bounded time allowed for the reaction. While the
tool was able to verify properties of very simple programs, the implementation of deadline
checking was quadratic in the size of the state space rather than linear as with usual CTL
or LTL checking algorithms, making its usability problematic. In addition, the custom
specification language was bothersome to support and extend.

3.1.2 Program-Analysis Direction
In 2000, Xu et al. [64, 65] developed a tool to determine whether it was safe to run un-
trusted machine code in a host computer given source-level typestate properties, using
a sequence of techniques including abstract interpretation and automated theorem prov-
ing. In 2004, Balakrishnan et al. introduced a static analysis tools for x86 executables
CodeSurfer/x86 [53, 54, 55] using overapproximation of possible program behaviours,
and introduced model-checking using it [66]. Another tool Device-Driver Analyzer for
x86 (DDA/x86) was introduced by Balakrishnan and Reps [67, 68]. Both use static
analysis with overapproximation and abstraction refinement [69].

Lim & Reps introduced a Transformer Specification Language (TSL) for writing ISA
specifications to be used in static program analysis using abstract interpretation [70, 71].
The language was used in a machine-code verification tool MCVETO [72, 69], which
combines overapproximation by abstraction with concrete program execution traces which
under-approximate the program behaviour and guide the refinement as per the SYNERGY
algorithm [73]. It seems that the focus of Reps et al. shifted to executable resynthesis after
2013 [74, 75, 76, 77] and largely away from machine code after 2017.

3.1.3 Automated-Theorem-Proving Direction
Unlike the other two directions, which do not seem to currently enjoy much attention,
formally verifying properties of machine-code programs and ISAs themselves using auto-
mated theorem provers, possible through translation to formulas by Hoare logic or similar
approaches, has seen a lot of both non-recent and recent development. I will describe
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selected historical developments and more recent state-of-the-art tools. Additional infor-
mation can be found e.g. in the thesis of Sammler [78].

Nqthm. Boyer & Yu used an automated reasoning system Nqthm to verify machine-
code programs for the Motorola 68020 processor, formalising a subset of its ISA[79]. They
were able to formally verify various programs and snippets, including an implementation
of the classic Euclidean Greatest Common Divisor algorithm, compiled classic C code such
as the binary search and Quick Sort algorithm, and parts of the Berkeley Unix C string
library, finding three C programming errors [79, p. 186-187]. However, the verification
required a good amount of work: building the library of lemmas to support proving took
many months, and using it, verification of correctness of another simple function would
still take Boyer & Yu a few hours [79, p. 190].

Symbolic execution. Currie et al. [80] used symbolic execution to prove equivalences
between pieces of machine code written for different architectures.

HOL4-assisted approach. Myreen et al. performed machine-code verification us-
ing the HOL4 theorem prover by translating the a snippet of machine code into a tail-
recursive function, implementing the translation for the Arm, PowerPC, and x86 architec-
tures [81, 82]. The snippet must be completely deterministic, and the program control flow
is computed heuristically, with the possibility of problems caused by e.g. indirect procedure
calls [82, p. 7].

L3 description language. Fox developed an ISA description language [83], later
named L3, and combined the approach of Myreen et al. with L3 for easier addition of
ISA support [84]. This has been used for the verified compilation of the ML language in
the CakeML project, avoiding the problem of the CompCert compiler where the assembly-
language-level compilation outputs are not verified [85].

x86 ISA in ACL2. Goel et al. [86] developed a formal specification for the x86-64
architecture for the ACL2 theorem prover. They only mentioned the actual verification of
machine code in a cursory way, but were able to verify straight-line machine-code program
snippets using SAT solving.

Sail description language. The Sail description language was introduced in 2015 to
describe fragments of user-mode ISA of weakly consistent multiprocessors in the context
of their concurrent behaviour [87, 88]. In 2019, the language was extended to support
describing the full ISA of contemporary processor architectures including ARMv8A, RISC-
V, and CHERI-MIPS [89], with automatic translation to sequential emulators as well as
formulas for popular theorem provers OCaml, Isabelle/HOL, and HOL4. To demonstrate
the usability for formal verification, a non-trivial address translation property of ARMv8A
was proven in Isabelle/HOL [89, p. 25-26]. Following this, the RISC-V specification in the
Sail language was selected as the official formal RISC-V specification [90].

Serval. Nelson et al. developed Serval [57, 2], a framework for verification of machine-
code programs based on symbolic execution, built on top of the Rosette solver-aided pro-
gramming language (which itself is backed by an SMT solver such as Z3). They emphasize
the “push-button” approach to verification, where no user interaction is necessary, at the
cost of simple properties (safety properties encoded in the instruction set description, a
specification state machine, and additional predicates). Nelson et al. built interpreters of
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RISC-V, x86-32, LLVM, and Berkeley Packet Filter (BPF), which are converted to ver-
ifiers by Rosette. They were able to verify properties of two security monitor programs
that provide software isolation, porting them to a RISC-V platform. The fact that the
security monitor programs have finite interfaces with bounded trace lengths allowed their
verification with Serval. The Serval approach is severely limited in its verification power:
in addition to only supporting safety properties, it only allows for programs with finite-
length execution traces, disallowing any infinite loops. This precludes it from verifying
many programs, including bare-metal programs intended to run for an unbounded amount
of time (as discussed in Subsection 2.1.3).

Islaris. In 2021, Armstrong et al. introduced the Isla tool that allows symbolic ex-
ecution of machine-code snippets using the Sail specification [91], intended for testing
of memory concurrency behaviour. In 2022, Sammler et al. presented Islaris, verifying
machine-code snippets for ARMv8A and RISC-V [56, 1]. They noted that the complexity
of the specification translated to formulas precluded feasible verification using just a the-
orem prover [56, p. 826], instead using the Isla tool to generate symbolic-execution traces
— using the Iris higher-order separation logic framework [92] — which are much simpler
as they apply directly to the snippet under verification. The Coq theorem prover is then
used to verify the trace, potentially using manually provided proof steps, ensuring that the
assumptions used by the Isla tool hold and proving user-defined safety properties about
externally visible program behaviour. Modified Hoare logic is used, with loop invariants
necessary to be discovered (manually or with the aid of the theorem prover). Sammler et al.
proved properties of 7 example snippets ranging from 1 to 47 assembly instructions, in-
cluding a memcpy function, where it was necessary to manually give hints to the theorem
prover to prove a loop invariant [56, p. 831].

Katamaran. The Katamaran project [93, 94] also uses symbolic execution for subse-
quent verification using Coq but is targeted towards verification of the guarantees of the
ISA itself, such as secure enclaves or Capability Hardware Enhanced RISC Instructions
(CHERI), against instruction semantics.

Notably, Islaris [1], Serval [2], and Katamaran [94] are available online as free and
open-source projects. I have examined Islaris and Serval practically and was able to run
the examples. Unfortunately, for actually specifying and proving properties, they require
specialist knowledge of the Coq theorem prover and Rosette solver-aided programming
language, respectively.

3.1.4 Comparison of Verification Directions
In each of the three directions, the approach used was determined by the specifics of
the verification problem. The original model-checking and Hoare-logic approaches can be
thought of as antipodes: naïve model checking is fully automated from the start, and
Hoare logic is based on largely manual proofs, which can be automated to some extent by
using Automated Theorem Provers. The program-analysis direction lies somewhere in the
middle between them.
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While the effort on previous tools from the model-checking and program-analysis di-
rections was largely abandoned, the automated-theorem-proving direction currently enjoys
much attention, notably spurred on by the work on RISC-V and Sail description language.
The Islaris and Serval tools in particular are highly interesting for formal machine-code
verification, although they require specialist knowledge of automated theorem proving (in-
cluding the actual prover used) from the user. While model-checking tools may only be
practically usable for simpler systems and specifications, they can be used for arbitrary
systems that include loops fully automatically, without much specialist knowledge.

3.2 Other System Levels
Source-code and hardware verification tools are used in practice with a variety of com-
peting tools [95]. While they posit substantially different challenges than machine code,
inspiration can be taken from the tools and verification directions. I will also note bytecode
and microcode verification efforts.

3.2.1 Source-Code
The main source for determining the state of the art in formal verification of source-
code systems is the SV-COMP competition, organised yearly from 2012 onwards. In
the latest competition [96], there were 59 verification tools participating, showing that
source-code verification is highly established in the formal verification community. The
main programming language in SV-COMP and most competing tools is the C language,
widely used e.g. in operating system kernels and drivers where programming bugs can
severely impact the security or safety of the affected computers. In the latest SV-COMP
competition, there were 30300 C verification tasks [96, p. 300], showing the maturity of work
on benchmarking of source-code verification. Nevertheless, good results in SV-COMP do
not necessarily mean that the tools are applicable to industrial use [97].

Notably, all specifications in SV-COMP are simple LTL formulas in the form Gϕ,
where ϕ is an atomic property, or Fϕ for termination [98]. As such, it is possible to verify
the specifications using simpler reachability-based algorithms rather than the algorithms
for checking e.g. LTL, CTL, or CTL* specifications. Simple path-based counterexam-
ples can be generated where Gϕ is violated. I would argue that the focus on degenerate
specifications may be detrimental to the diversity of research: there is no quantitative mo-
tivation for verifying more complex specifications that correspond to less trivial violations.
Instead, the verification tools are incentivised to present quantitative improvement for the
degenerate specifications.

While there are many participating tools in SV-COMP, two tools stand out in partic-
ular, frequently placing in top three or winning many categories: CPAchecker2 [99] and

2As a part of fulfilment of requirements for submitting my doctoral thesis, I went on a month-long
study stay at the Software and Computational Systems Lab of the Ludwig Maximilian University of
Munich, which develops CPAchecker. I contributed to its predicate abstraction component, allowing
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Ultimate Automizer, part of the Ultimate program analysis framework [100]. Notably,
both of the tools use CEGAR and encode the program and the property into Satisfi-
ability Modulo Theories (SMT) formulas which are checked by underlying SMT solver
tools [96, 101]. Further techniques are used to extend this basic concept or introduce
additional improvements, but they are beyond the scope of this thesis.

Note 3.2.1. Bytecode was also used for verification. In the main part of the competition,
the DIVINE model checker, which uses LLVM IR bytecode [102], was entered outside of
the competition (hors-concours). The SV-COMP competition also features a track on
verification of Java programs. The Java track is decidedly less popular, with only 9 tools
participating, 4 of them hors-concours. The top three tools MLB [103], JBMC [104],
and GDart [105] all use JVM bytecode. All of the hors-concours tools used the JPF
framework [96, p. 308-310], which works with JVM bytecode as well [106].

3.2.2 Hardware
Hardware verification has been widespread in industrial practice since the turn of the
century [95]. Open-source tools are more scarce. The main hardware system formal verifi-
cation competition is the Hardware Model Checking Competition (HWMCC), the latest
HWMCC at the time of writing this thesis held in 2024 in Prague [107], with 13 teams
participating, showing a distinctly lower popularity than source-code verification. Out of
these tools, the model checker rIC3 performed the best, followed by AVR (Abstractly
Verifying Reachability) [108]. Both rIC3 and AVR use a portfolio of verification strate-
gies [107], employing the IC3 algorithm used with SMT solvers, Bounded Model Checking,
and k-induction. Notably, the algorithms for rIC3 are implemented in the Rust program-
ming language.

The IC3 algorithm is based on to refining sets of states in steps reachable from the initial
states, the sets of states determined by invariants that hold [109]. Bounded model checking
allows to refute properties in a finite number of steps (especially using SAT solvers) [47],
while k-induction [110] can also be applicable to prove they hold for an infinite number of
steps using an inductive invariant strengthened to sequences of multiple (k) states [47, p].

Also notable is the ABC solver [111] used in the previous 2020 HWMCC [112], which is
much more hardware-specific, based on single-bit handling via And-Inverter Graphs, using
multiple algorithms to handle verification, one of them abstraction refinement [111, p. 36].

Recently, the Btor2C tool has been introduced, allowing verification of hardware sys-
tems using software tools using translation from hardware to C source code [113]. The
software tools typically under-performed the hardware ones except for a few of the tasks
in the benchmark, an expected result as the tools are tailored to the specific system level.
Notably, the translation exploited the commonalities of bit-vectors in digital systems dis-
cussed in Section 2.1.

verification of programs that use the standard C library memory-manipulation functions memset, memcpy,
and memmove, and improved the treatment of quantifiers.
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Note 3.2.2. Microcode can be considered to lie somewhere between hardware and machine-
code verification. Little has been published on formal verification of microcode but fairly
comprehensive summaries of related work have been presented by Davis et al. [114] and
Goel et al. [115]. This is expected as microcode is the core intellectual property of processor
design companies. Due to its similarity to normal machine code, machine-code verifica-
tion tools could potentially be used for microcode verification. In addition, some processors
contain machine code in Read-only Memory (ROM) programmed by the manufacturer, pro-
viding features such as Secure Boot. Bugs in such code may be unfixable on already man-
ufactured devices. For example, a buffer overflow vulnerability in manufacturer-provided
ROM machine code allowed exploits on a range of NXP devices, and it was only fixed on
newly manufactured devices, leaving many devices vulnerable [116].

3.3 Research Decisions
Formal verification of source-code systems is the most popular in the open-source commu-
nity, with hardware systems more popular in industrial practice, with fewer open-source
tools available. Formal verification of machine-code systems seems comparatively under-
researched, although there have been significant steps in the Hoare logic direction. A large
part of the difficulty seems to be due to the need to combine easy writing of processor
descriptions and management of the abstraction so that the state space size (or the size
of formulas for Hoare-style approaches) is not infeasibly large but the verification is still
useful. This contributes to the absence of standard test sets, as the machine-code is in-
trinsically tied to the underlying architecture (this is comparable to the source-code level,
where test sets written in C dominate, followed by Java).

ISA descriptions. The research into formal ISA descriptions is significant especially
in the Hoare logic direction, currently centred around the Sail description language in which
the official formal description of RISC-V is formalised. However, the focus on more complex
architectures and description of the ISA without peripheral considerations are problem-
atic in the context of model-checking, which has been traditionally used for programs on
embedded 8-bit microcontrollers due to state space explosion problems.

Existing machine-code verification tools. As for the tools such as Serval and
Islaris, I believe that they are well-suited for verifying critical routines (especially in the
context of possible bugs affecting security), the need to use special automated-proving-
related tools and knowledge restricts them to the use by well-trained specialists for parts
of truly critical systems. While the tools do not seem ready for industrial use yet, it seems
prospective given further development. In addition, it also is sensible to develop tools that
are fully automatic and as simple as possible to use even at the expense of the number
of properties verifiable in reasonable time and memory, as exemplified by Arcade.µC for
machine code and and the tools participating in SV-COMP and HWMCC, which can be
used by less trained programmers for less critical systems as well.

Specifications. It is worrying to me that much research focuses on simple safety or
(un)reachability properties, despite their lack of expressiveness. Specifically, branching-
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time logics offer a different style of thinking than linear-time logics, which can be suitable
to revealing different bugs. In Subsection 7.4.6, I will discuss how I found one such bug
using a recovery property not expressible in a linear-time logic.

At the outset of my doctoral research, I was well-aware of the model-checking-style
research into machine-code verification exemplified by Arcade.µC, on which I previously
based the tool in my master thesis [A.4], and decided to focus on the points that limited
the usability of my previous tool, devising novel techniques that will be discussed in the
rest of this thesis. I will now give the reasons for my decisions in devising the techniques:

◦ In Chapter 4, I focus on enabling machine-code verification without tailoring to a
specific architecture using translation of simulable processor descriptions that are
written in the Rust language. The reason to use the Rust language instead of a
specific description language3 is simple: it is possible to compile it using a standard
compiler (both the system description itself and the abstraction-refinement transla-
tions), which is not possible for description languages.

◦ In Chapter 5, I introduce a novel TVAR framework, so that arbitrary µ-calculus
properties (including CTL*, CTL, and LTL properties) can be verified with abstrac-
tion refinement. This means the abstraction techniques can be used fully without
falling back to a logic such as LTL or ACTL as in the case of Arcade.µC [4].

◦ In Chapter 6, I describe the technique of fast computation of arithmetic operation
results in three-valued bit-vector abstraction, which was previously not possible and
severely limited machine-code verification. Importantly, this allows the TVAR frame-
work from Chapter 5 to be useful in the face of combinations of bitwise manipulation
and arithmetic operations.

In Chapter 7, I will discuss how I combined the techniques in my new tool machine-check,
provide experimental results that show that is usable for machine-code verification, and
compare its capabilities with other tools for machine-code formal verification I identified
as important.

The introduced techniques allow machine-check to use arbitrary system descriptions
and support abstraction refinement, something that was lacking in Arcade.µC. Unlike the
tools such as Islaris or Serval, the verification is performed fully automatically without
requiring much user training. Furthermore, the use of Three-valued Abstraction Refine-
ment allows verification of branching-time verification properties. While the ATmega328P
processor description was hand-written using the available documentation, translation of
official formal ISA descriptions to machine-check descriptions is theoretically possible
and may be added in the future.

3Such as the Sail description language, although I was not aware of it during much of writing the
thesis.
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Chapter 4
Machine-Code Verification Using

Translation of Simulable Descriptions

An important problem for the verification of machine-code systems is that the guarantees
for the underlying processors are usually only given informally in the accompanying doc-
umentation. While the machine code itself is a well-defined bit sequence, it is necessary
to formalise the guarantees before the system can be verified. While there are specially
created description languages for verification [22], I strove to instead use a general-purpose
programming language because they are popular, well-developed, and provide various con-
veniences such as syntax highlighting, linting, and library management. I succeeded by
devising a novel translation technique.

To formalise the guarantees given for the processor, we can write its simulable descrip-
tion, which I define as code in a general-purpose programming language that describes
the processor behaviour as a finite-state machine (FSM). The FSM is parameterised by
the machine code that will be executed on the processor. By instantiating the simulable
description with the machine code as a parameter, the machine-code system is formed, and
it can be simulated by stepping the FSM.

Unfortunately, without additional reasoning, the simulable descriptions are only veri-
fiable explicitly, precluding abstraction refinement and making verification of reasonably
complex systems infeasible. However, it is typically hard to reason over constructs of
general-purpose programming languages as they are written with expressivity in mind.

To ensure that abstraction refinement can be used in conjunction with simulable de-
scriptions, I devised a technique of translating the simulable descriptions to their verifica-
tion analogues, using meta-programming (automatically rewriting code to other code).

A verification analogue is code added to the simulable description (not changing its
own behaviour) that is written in the same language and behaves analogously to the
description code, but using a different interpretation of the language constructs than the
usual. Specifically, in the abstract analogue, the data types are changed to abstract types
(e.g. bit-vectors to three-valued bit-vectors), and the functions are adjusted accordingly.
The refinement analogue is used to find the reason for an unknown verification result,
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the data types and algorithms are transformed so that the finite-state machine is stepped
backwards, deductively finding possible causes for the unknown result. The verification
analogues and the translation process will be discussed in more detail in Chapter 7.

I implemented the technique in my formal verification tool machine-check, written
in the Rust language. The simulable descriptions are written in a subset of the Rust
language, and they are translated to their verification analogues using a macro, a special
Rust language construct that allows meta-programming during compilation. Since the
verification analogues themselves are subject to compilation, they can be optimised by the
compiler, improving verification performance.

In this chapter, I will introduce the high-level process of verification from the point
of view of writing a processor description for verification of machine-code systems using
machine-check, without considering the internals. I will show the description of a very
simplified Reduced Instruction Set Computer (RISC) processor, construct a machine-code
system using a hard-coded machine-code program, and discuss some properties that can
be verified to hold. After that, I will discuss the subset of Rust in which the descriptions
can be written, noting that arbitrary digital systems can be described.
Note 4.0.1. Sections 4.1 and 4.2 in this chapter, describing the point of view of a processor
description writer, are based on the contents of my paper [A.2], reworked for inclusion in
this thesis.

As machine-check is used as a library by the description writer, the functionality of the
built verifier executable depends on the description writer. In simple cases such as Figure
4.3, the behaviour of machine-check, including the property to verify, is determined
by command-line arguments. A Graphical User Interface (GUI) can also be opened for
more comfortable verification. More information about these details can be found in the
machine-check user guide1. I will not discuss them closely in this thesis.

4.1 Verification of Machine-Code Systems
A machine-code system is composed of the machine code itself and the processor which
executes it. This means that both the machine code and the processor description are
necessary for formal verification of the system against a specification, as shown in Fig-
ure 4.1. While the machine code is some well-defined bit sequence (or multiple sequences
in non-consecutive locations), stored e.g. in the Intel HEX format, the processor descrip-
tions are typically only given in the human-readable form of datasheets and user manuals.
Sometimes, processor simulators are available, either from the manufacturer or some third
party. Unfortunately, the descriptions of the processors in simulators are not usable for
formal verification using model checking with abstraction refinement, as that requires the
ability to manipulate the description to work with the abstraction of the system rather
than the system itself.

1The user guide for machine-check is available at https://book.machine-check.org. The user guide
for the latest version of machine-check at the time of writing is available at https://book.machine-
check.org/0.4.0.
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processor machine code

system specification

verification
result

combine

verify

Figure 4.1: A high-level overview of formal verification of machine-code systems. The solid
yellow cells represent inputs, while the dashed blue cells represent automated results. The
processor and machine code are combined to form the system under verification. It is
then determined if the specification holds or does not hold in the system. This figure is a
specialisation of Figure 2.1 for machine-code systems.

In my formal verification tool machine-check, I use translation of simulable proces-
sor descriptions to verification analogues to support effective verification of machine-code
programs. The high-level overview of machine-code verification via machine-check is vi-
sualised in Figure 4.2. The simulable processor description, written in Rust code, is trans-
lated to verification analogues, which are compiled together with algorithms that control
the verification process. The machine code and specification are provided as arguments to
the resultant executable. As such, the verification is faster and uses less memory than if the
system was interpreted, yet allows for flexible, iterative development of the machine code
and specification. The verifier executable can also be used on a dedicated server without
installing the Rust language ecosystem. Currently, verification against Computation Tree
Logic (CTL) [34] specifications is supported.

The verification result is a yes-no answer of whether the specification holds for the sys-
tem. The final abstract state space, which serves as a witness to the CTL verification result,
is printed out if requested via a command-line parameter. By design, machine-check is
complete, producing the yes-no answer in finite time (although the needed computation
time and memory may be impractical for some combinations of system and specification).

4.2 Processor Descriptions
The simulable descriptions in machine-check are designed to make describing processor-
based systems simple. Even so, real architectures are still time-consuming to implement
due to the size of the instruction set. For example, I have described the AVR ATmega328P
microcontroller in approximately 3000 lines, with simple peripheral support only. Fortu-
nately, once coded, the vast majority of the description can be reused for other similar
microcontrollers with the same architecture.
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Figure 4.2: A high-level overview of machine-check machine-code system verification
process. The processor description is translated to verification analogues, then compiled
together with verification control algorithms to form a verifier executable for the given
processor, visualised in a solid green cell. The verifier is executed with the machine code
and specification given as arguments, performing formal verification as in Figure 4.1. The
compilation step ensures a speed gain over interpretation. Additional guarantees beyond
the processor descriptions are not considered in this chapter for simplicity.

A simulable description of a very simplified RISC microcontroller2 is shown in Fig-
ure 4.3. The description is written in a subset of valid Rust code (which will be described
later in Section 4.3), using specially provided machine-check types for simple transcrip-
tion of behaviour from datasheets. The machine-code system described in Figure 4.3 can
be immediately simulated in Rust by instantiating the System structure, with the machine
code under simulation contained in field progmem, and using the init and next functions
to generate successive states using a given sequence of inputs.

While simulation is performed with a single input sequence, all input sequences must
be considered for formal verification. Since each successive state only depends on the
previous state and the input, it would be possible to generate the reachable state space that
completely captures the system behaviour. However, this is infeasible in practice due to
the exponential explosion problem. As such, the machine_description macro provided by
machine-check, applied to the description on line 1 of Figure 4.3, automatically generates
verification analogues of the machine, allowing the use of advanced abstraction-refinement
techniques. In case the description code does not conform to the subset of Rust processable
by machine-check translation, a compilation error is issued so the problem can be fixed.

In the description in Figure 4.3, the input, state, and system structures are defined
on lines 3–17. Power-of-two array sizes and bit-vector lengths are determined by generic
constants, so e.g. the register array reg contains 22 = 4 registers, each 8 bits wide. On lines
18-59, the finite-state-machine behaviour is described by the functions init and next. In

2The whole description is available at https://docs.rs/crate/machine-check/0.4.0/source/
examples/simple_risc.rs.
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1 #[machine_check::machine_description]
2 mod machine_module {
3 pub struct Input {
4 gpio_read: BitvectorArray<4, 8>,
5 uninit_reg: BitvectorArray<2, 8>,
6 uninit_data: BitvectorArray<8, 8>,
7 }
8 impl ::machine_check::Input for Input {}
9 pub struct State {

10 pc: Bitvector<7>,
11 reg: BitvectorArray<2, 8>,
12 data: BitvectorArray<8, 8>,
13 }
14 impl ::machine_check::State for State {}
15 pub struct System {
16 pub progmem: BitvectorArray<7, 12>,
17 }
18 impl ::machine_check::Machine for System {
19 type Input = Input;
20 type State = State;
21 fn init(&self, input: &Input) −> State {
22 State {
23 pc: Bitvector::<7>::new(0),
24 reg: Clone::clone(&input.uninit_reg),
25 data: Clone::clone(&input.uninit_data),
26 }
27 }
28 fn next(&self, state: &State, input: &Input)
29 −> State {
30 let instruction = self.progmem[state.pc];
31 let mut pc = state.pc + Bitvector::<7>::new(1);
32 let mut reg = Clone::clone(&state.reg);
33 let mut data = Clone::clone(&state.data);
34 ::machine_check::bitmask_switch!(instruction {
35 "00dd_00−−_aabb" => { // add
36 reg[d] = reg[a] + reg[b];
37 }
38 "00dd_01−−_gggg" => { // read input
39 reg[d] = input.gpio_read[g];
40 }
41 "00rr_1kkk_kkkk" => { // jump if bit 0 is set
42 if reg[r] & Bitvector::<8>::new(1)
43 == Bitvector::<8>::new(1) {
44 pc = k;
45 };
46 }
47 "01dd_kkkk_kkkk" => { // load immediate
48 reg[d] = k;
49 }
50 "10dd_nnnn_nnnn" => { // load direct
51 reg[d] = data[n];
52 }
53 "11ss_nnnn_nnnn" => { // store direct
54 data[n] = reg[s];
55 }
56 });
57 State { pc, reg, data }
58 }
59 }
60 }

Figure 4.3: Example description of a simplified RISC microcontroller as a finite-state
machine. Less important code details are omitted for conciseness and readability.
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Rust, if the last statement in a function is not terminated by a semicolon, it is the return
value. As such, both functions return new states. The init function returns a state with
the program counter set to zero and other fields uninitialized (having arbitrary values). The
function next reads the current instruction from read-only program memory, increments
the program counter, and decides on the action to perform depending on the instruction
value. The bitmask_switch macro is designed to have the same format as conventional
instruction set descriptions, filtering on zeros and ones and creating new variables for
letters.

Each system has specific parameters. For example, classic finite-state machines are
constructed without any parameters, while machine-code systems must be provided with
the machine code, with varying specifics such as instruction length and the number of
instructions. As such, in machine-check, constructing the system is the responsibility of
the description writer. For machine-code systems, the intended approach is to read the
machine code from a file given as an argument to the verifier. However, for conciseness,
in Figure 4.4, the example system from Figure 4.3 is constructed with a hard-coded toy
machine-code program. The constructed system is handed off to the main routine of
machine-check afterwards, which verifies a specification obtained from arguments to
the executable. As such, properties of the system obtained by compiling the code from
Figures 4.3 and 4.4 can be formally verified. For example:

◦ Register 1 is set to 1 before the main loop is reached: AF[reg[1] = 1 ∧ PC < 3].
◦ It is always possible to reach program location 9: AG[EF[PC = 9]].
◦ Program locations above 9 are never reached: AG[PC ≤ 9].

The properties are verified nearly instantaneously, below one second of computation time,
with insignificant memory usage. In comparison, naïve model-checking without abstraction
would require constructing more than 228 = 2256 states, which is completely infeasible.

4.3 Subset of the Rust Language Usable in Descriptions
Having shown an example of a simulable description in Figure 4.3, I will discuss what
subset of the Rust language that can be used in descriptions in the current versions
of machine-check. This only affects the simulation description code inside the macro
machine_description, not the related code such as the main function in Figure 4.4.
Note 4.3.1. In the rest of this section, I will write the Rust language constructs under-
lined. Informal but authoritative information about the constructs is provided in the Rust
Reference3. In the electronic version of this thesis, the underlined constructs link to the
appropriate parts of the Rust Reference.

3The latest version of the Rust Reference is available at https://doc.rust-lang.org/stable/
reference/. In machine-check 0.4.0, the current version at the time of writing of this thesis, the
minimum supported Rust version is 1.83.0, with the corresponding version of the Rust Reference at
https://doc.rust-lang.org/1.83.0/reference/.
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1 fn main() {
2 let toy_program = [
3 // (0) set r0 to zero
4 Bitvector::new(0b0100_0000_0000),
5 // (1) set r1 to one
6 Bitvector::new(0b0101_0000_0001),
7 // (2) set r0 to zero
8 Bitvector::new(0b0110_0000_0000),
9 // −−− main loop −−−

10 // (3) store r0 content to data location 0
11 Bitvector::new(0b1100_0000_0000),
12 // (4) store r0 content to data location 1
13 Bitvector::new(0b1100_0000_0001),
14 // (5) read input location 0 to r3
15 Bitvector::new(0b0011_0100_0000),
16 // (6) jump to (3) if r3 bit 0 is set
17 Bitvector::new(0b0011_1000_0011),
18 // (7) increment r2
19 Bitvector::new(0b0010_0000_1001),
20 // (8) store r2 content to data location 1
21 Bitvector::new(0b1110_0000_0001),
22 // (9) jump to (3)
23 Bitvector::new(0b0001_1000_0011),
24 ];
25 let mut progmem = BitvectorArray::new_filled(
26 Bitvector::new(0));
27 for (index, instruction) in toy_program
28 .into_iter().enumerate() {
29 progmem[Bitvector::new(index as u64)] = instruction;
30 }
31 let system = machine_module::System { progmem };
32 machine_check::run(system);
33 }

Figure 4.4: Example of code for verification of a machine-code system based on the sim-
plified RISC processor from Figure 4.3. On lines 1–25, the first ten instructions are hard-
coded, and on lines 26–31, they are assigned into the program memory, pre-filled with
zeros. The System structure is instantiated on line 32, combining the processor description
with the provided program memory, and the verification is run with the provided system.
Finally, the system is handed off to machine-check on line 33, which verifies properties
determined by command-line arguments.
Considering data locations 0 and 1 to be memory-mapped peripherals (e.g. general-purpose
outputs), the output behaviour of the program is that the locations are set to zero on
initialisation, after which the data location 1 is varied between zero and the content of
register 2, which is incremented each time the bit 0 of input location 0 is read as set.

The published version of the paper [A.2] contains slightly wrong comments to instructions (3) and (4) and it is not considered

in the figure caption that the data location 1 is periodically set to 0 in the main loop. The main text is not affected.

45



4. Machine-Code Verification Using Translation of Simulable
Descriptions

The basic principle is that the macro machine_description emits the code that was
originally written, augmented with the verification analogues that are only usable by
machine-check and opaque to the user. As such, the descriptions can be directly used
outside machine-check as they would be without the macro, so it is possible to e.g. sim-
ulate the described systems by directly stepping the instance of the Machine with given
inputs.

The only exception to the principle is when the macro is not able to translate to the
verification analogues for some reason, in which case it emits an error. In that case, care
is taken so that the error is descriptive and localised to the problematic code span so that
it can be fixed. It is also possible that the generated code will cause compilation to fail at
a later stage. Errors have no impact on soundness as verification cannot proceed if they
are emitted.

The macro machine_description must be applied to a module introduced by the Rust
keyword mod that forms a separate lexical scope and contains items. I will now describe the
basic supported items and the constructs inside them non-exhaustively. Since machine-
check is not yet stable, the details may still change.

Use declarations. Since the translation occurs without access to the outer scope of
the macro, it is necessary to either qualify each item from outside of the module with
a full path, such as ::machine_check::Machine, referring to item Machine provided by
machine-check, or add a use declaration as

1 #[machine_check::machine_description]
2 mod machine_module {
3 ...
4 use ::machine_check::Machine;
5 ...
6 }

After that, it is then possible to only refer to Machine in the scope.
Note 4.3.2. In Figure 4.3 and Figure 4.4, the use declarations that are needed for types
::machine_check::Bitvector and ::machine_check::BitvectorArray were skipped for
conciseness and readability.

Structs. In Rust, data types can be combined in a struct type. The struct is typi-
cally defined by a keyword struct followed by named field declarations in braces. In the
machine_description macro, the permitted field types are the other struct types defined
inside the macro in addition to the four types provided by machine−check, which are

◦ Unsigned, an unsigned integer type with finite bit-width,

◦ Signed, a two’s complement signed integer type with finite bit-width,

◦ Bitvector, a type with finite bit-width where signedness is not specified (and only
operations where signedness does not matter are supported),

◦ BitvectorArray, a finite power-of-2 array of Bitvector elements that is indexable
by Bitvector or Unsigned of the appropriate bit-width.
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4.3. Subset of the Rust Language Usable in Descriptions

Implementations. The defined structs can be provided with implementations, which
define items directly related to the struct, especially functions. Specially, a struct can
implement a trait, which describes an interface usable by other code without dependence
on the actual type. This is the key to describing a finite-state machine that can be verified
by machine-check. In Figure 4.3, the necessary implementations of the traits for the
finite-state machine are seen:

◦ ::machine_check::Input marks the structure as usable as a machine input.

◦ ::machine_check::State marks the structure as usable as a machine state.

◦ ::machine_check::Machine describes the behaviour of the finite-state machine via
the init and next functions. The associated types Input and State are set to the
locally defined struct types Input and State, deciding the appropriate signatures of
the init and next functions. In addition to the instances of the input and state
structures, these functions can access the instance of the implementing type, which
provides the system parameters.

The functions inside the implementations can have only the types permitted by the macro
in their signatures. They contain a block expression that determines their behaviour. The
block expression is introduced by curly braces and contains a sequence of statements that
can be followed by an expression determining the result value. Each statement is separated
with a semicolon, and three kinds of statements are supported in the machine_description
macro:

◦ Let statements that introduce an optionally-initialised variable, such as the statement
let a = Bitvector::<8>::new(255);.

◦ Expression statements that compute an expression, such as the assignment expression
reg[d] = reg[a] + reg[b];, and discard its return value.

◦ Macro invocation statements that execute a macro in statement position, such as
::machine_check::bitmask_switch!(...);. The supported macros are the bit-
mask switch macro provided by the machine−check library package and standard
library macros panic!, unimplemented!, and todo!, which allow the program to ter-
minate due to some unexpected cause (e.g. a situation that can only occur due to
a previous bug). When verified by machine-check, the inherent lack of panics can
either be verified on its own or before verification of another property (in which case
the verification returns an error if the inherent lack of panics is violated).

Out of the many expression types in Rust, only some are supported in the macro:

◦ Literal expressions, e.g. 255 or the string literal "00rr_1kkk_kkkk".

◦ Path expressions, e.g. k or ::machine_check::bitmask_switch, which denote a local
variable or an item.
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4. Machine-Code Verification Using Translation of Simulable
Descriptions

◦ Block expressions, e.g. {}.

◦ Operator expressions with a supported operator. Standard binary arithmetic, logical,
bit-shift, and comparison operators +, −, *, /, %, &, |, ^, <<, >>, ==, !=, >, <, >=, <= are
supported4, as well as unary arithmetic negation (−) and bitwise NOT (!). Special
supported operators are assignment (pc = k) and reference (&k), which takes the
reference of the variable instead of the variable itself, useful especially for calling
functions that should not take ownership of the variable, only access its value.

◦ Parenthesised expressions, to determine the precedence order of expressions.

◦ Array indexing expressions, e.g. reg[a].

◦ Struct expressions that instantiate a struct given the field names and values, sup-
porting a shorthand when the field names are the same as the corresponding variable
names, e.g. State { pc, reg, data }.

◦ Call expressions that call a function, e.g. Bitvector::<8>::new(1).

◦ Field access expressions that access a struct field, e.g. state.pc.

◦ If expressions that branch the execution conditionally, such as the if expression
if a < b { c = a; } else { c = b; }.

The currently supported subset of Rust does not contain loop expressions, so it is
impossible to inadvertently preclude verification due to an infinite loop. It is possible to
introduce infinite recursion, which will typically result in stack overflow during verification,
although it is also possible that the computation will continue indefinitely due to removal
of recursion through optimisation. As avoiding infinite recursion in system descriptions
is not very problematic, in the current version of machine-check, it is assumed that it
is avoided. In the future, loop expressions may be added and checking for the absence
of infinite loops and recursion may be introduced, so that the expressiveness is enhanced
while assuring finite computation time for the init and next functions.

4.4 Further Notes
This chapter was a light introduction to the simulable descriptions of processors from
the viewpoint of a description writer. The machine-code system use-case is ideal for the
translation technique, as the processor description can be compiled only once per device,
after which many programs and specifications can be verified using the resulting executable.
A source-code or hardware system description can also be produced by translation from
the original formal language to the subset of Rust permitted for descriptions, although

4Division and remainder are currently not available, as I have not yet decided on the behaviour for
division by zero and signed division overflow, but they are technically supported by the translation.
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4.4. Further Notes

recompilation is necessary each time the system is changed. A more straightforward use of
this possibility is the translation of a processor description (or a part of it) from another
formally specified language, such as the Sail language discussed in Subsection 3.1.3. This
could be used to translate e.g. parts of the official RISC-V Instruction Set Architecture
(ISA) description from Sail in the future.

The implementation of the translation in the macro machine_description that pro-
duces the verification analogues will be described in more detail in Chapter 7, once the
interacting techniques from Chapters 5 and 6 are also introduced.
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Chapter 5
Input-based Three-valued

Abstraction Refinement

In this chapter, I describe a novel abstraction framework based on Three-Valued Abstrac-
tion Refinement (TVAR) that I devised during my doctoral study, with formal proofs that
it can be used for model checking with abstraction refinement. The framework performs
refinement on system inputs rather than system states as previous TVAR-based abstrac-
tion frameworks have done, resulting in simpler formalisms and implementation. The
framework is implemented in my free and open-source verification tool machine-check.
Note 5.0.1. This chapter is based on the contents of an available preprint [A.3], reworked
for inclusion in this thesis. As the paper was a joint work with my supervisor, I have
retained the plural first-person pronouns (we) in the rest of this chapter. I was the main
contributor, while my supervisor contributed mainly to simplification of formalisms and
proofs and overall readability.

Abstraction-refinement methodologies are ubiquitous in formal verification, the fore-
most being Counterexample-guided Abstraction Refinement (CEGAR) [45, 44]. Unfortu-
nately, CEGAR does not support the whole propositional µ-calculus or even Computation
Tree Logic (CTL), being in principle suitable for logics such as linear-time µ-calculus,
ACTL*, ACTL, or LTL [41, p. 404]. This leaves a large class of potentially crucial non-
linear-time-properties unverifiable. Three-valued Abstraction Refinement (TVAR) is able
to verify full µ-calculus.

Previous TVAR frameworks refined abstract states, necessitating state space formalisms
based on modal transitions. Frameworks based on simple formalisms [117, 118] are not
monotone: previously provable properties may no longer be provable after refinement.
Intricate monotone formalisms [119, 120, 121] were devised, their specialised semantics
complicating the use of standard model-checking algorithms. We conjecture that the con-
ceptual complexity of those approaches is one of the reasons for the lack of available TVAR
tools (with one exception [122]), compared to CEGAR.

Inspired by simulation-oriented abstract state space generation in (Generalized) Sym-
bolic Trajectory Evaluation [123, 124, 125, 126] and Delayed Nondeterminism [4], which
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were both restricted to proving linear-time properties, we present a novel TVAR framework
that does not use modal transitions. The framework is based on a simple Partial Kripke
Structure (PKS), allowing direct application of standard model-checking algorithms. It
also allows for precise control of the size of the reachable abstract state space during each
refinement. We prove that the introduced framework is sound, monotone, and complete
for µ-calculus properties and existential abstraction domains, provided simple requirements
are met.

We implemented a machine-code verification tool that instantiates our framework and
successfully used it to find a bug in a machine-code program using a property unverifiable
by CEGAR-based tools. We also show effective mitigation of state-space explosion by
evaluating on synthetic automata.

The generality of the framework allows its instantiation to arbitrary systems based on
automata, its conceptual simplicity and the possibility to directly use standard model-
checking algorithms are beneficial for the implementation of corresponding tools, and its
flexibility allows the design of efficient heuristics.

5.1 Previous Work
In this section, we list previous relevant work on TVAR in roughly chronological order, with
additional information available in summarising papers [41, 127]. After that, we discuss
similar work based on abstract simulation.

Example 5.1.1. Consider a finite-state machine in Figure 5.1, representing e.g. a controller
of aircraft landing gear retraction: if the most significant bit (msb) of the state is 0, the
landing gear is extended; if 1, it is retracted. The system is required to follow a single-bit
input from the gear lever, with some slack for responses. There is a critical bug, occurring
if the aircraft loses power in flight when the landing gear is retracted, and the controller
restarts in the state 000 after the power is regained: since the landing gear lever is set
to retraction, the controller goes through the states 011 and 111, causing a total loss of
capability to extend the gear again unless the controller is turned off and on again.

The bug is not just dangerous, but also sneaky, as it does not occur in normal aircraft
operation. To protect ourselves against it, we can verify the property “from every reachable
system state, it should be possible to reach a state where the landing gear is extended”
holds in the system. This is formalised by a recovery property AG[EF[¬msb]] in CTL, not
possible to check using CEGAR.

Since the system is buggy, the property should be disproved1. We will instead reason
about proving a dual property, EF[AG[msb]]. In Figure 5.1, msb definitely holds in the
state 101, and since 101 just loops on itself, AG[msb] holds in it. As 101 is reachable from
000, EF[AG[msb]] holds, and the bug is found. While such reasoning is easy for simple

1In our terminology, proving the property determines it holds in the system. Disproving it determines
it does not. Verification aims to either prove or disprove it.
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Figure 5.1: Example system expressed as a finite-state machine. The states where ¬msb
holds are drawn green while the states where msb holds are drawn orange.

systems, in real life, the controller may have billions of possible states, requiring us to
abstract some information away2.

Partial Kripke Structures (PKS). In verification on partial state spaces [128], some
information is disregarded to produce a smaller state space. PKS enrich standard Kripke
structures (KS) by allowing unknown state labellings.

Definition 5.1.2. A partial Kripke structure (PKS) is a tuple (S, S0, R, L) over a set of
atomic propositions A with the elements

◦ S (the set of states),

◦ S0 ⊆ S (the set of initial states),

◦ R ⊆ S × S (the transition relation),

◦ L : S × A → {0, 1,⊥} indicating for each atomic proposition whether it holds, does
not hold, or its truth value is unknown (the labelling function).

A Kripke Structure (KS) is a PKS with L restricted to S × A→ {0, 1}.

Example 5.1.3. While Figure 5.1 shows a finite-state machine, it can be converted to a
Kripke structure by discarding the inputs, with S = {000, 001, . . . , 111}, S0 = {000}, and
R given by the transitions in Figure 5.1. L labels msb in states {000, 001, 010, 011} as 0,
and in {100, 101, 110, 111} as 1.

For proving EF[AG[msb]], such a KS is unnecessarily detailed. Using PKS, we could
e.g. combine 010 and 110 into a single abstract state where it is unknown what the value
of the most significant bit is, and the labelling of msb is ⊥.

Existential abstraction. In TVAR, existential abstraction is used, where the abstract
states in set Ŝ are related to the original concrete states in S by a function γ : Ŝ → 2S,
the abstract state ŝ ∈ Ŝ representing some (not fixed) concrete state in s ∈ γ(ŝ) in each
system execution instant. This is a generalisation of Abstract Interpretation domains, also
allowing e.g. wrap-around intervals [129].

2The example is directly inspired by a bug we found, discussed in Subsection 7.4.6.
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Example 5.1.4. In the examples, we will use the three-valued bit-vector domain, where
each element is a tuple of three-valued bits, each with value ‘0’ (definitely 0), ‘1’ (definitely
1), or ‘X’ (possibly 0, possibly 1). Except for figures, we write three-valued bit-vectors in
quotes, e.g. γ(“0X1”) = {001, 011}. The bits can also refer to a predicate rather than a
specific value. For example, ‘1’ could mean that v > 5 holds, ‘0’ that its negation holds,
and ‘X’ that we do not know.

5.1.1 Previous TVAR Frameworks
Building on the work of Bruns & Godefroid [128, 130, 131], Godefroid et al. [117] introduced
TVAR by refining the abstract state set, using a state space formalism based on modal
transitions. Early TVAR approaches [117, 132, 118, 133, 134] were based on Kripke Modal
Transition Structures (KMTS) and did not guarantee previously provable properties stay
provable after refinement, i.e. were not monotone.

Definition 5.1.5. A Kripke Modal Transition Structure (KMTS) is a tuple (S, S0, R
may,

Rmust, L) where S, S0, and L follow Definition 5.1.2, and

◦ Rmay ⊆ S × S is the set of transitions which may be present,

◦ Rmust ⊆ Rmay is the set of transitions which are definitely present.

Intuitively, KMTS allow for transitions with unknown presence (Rmay \ Rmust). PKS
can be trivially converted to KMTS by setting Rmay = Rmust = R. While it is possible to
convert a KMTS to an equally expressive PKS by moving the transition presence into the
states [135], it requires the set of states to be modified.

Monotone frameworks. Godefroid et al. recognised non-monotonicity as a problem
and suggested keeping previous states when refining [117, p. 3-4]. However, Shoham &
Grumberg showed the approach was not sufficient, as the refinements did not allow ver-
ifying more properties, and introduced a monotone TVAR framework using Generalized
KMTS for CTL [119], later extended to µ-calculus [136]. Gurfinkel & Chechik introduced
a framework for verification of CTL properties on Boolean programs using Mixed Transi-
tion Systems [120], later extended to lattice-based domains [137]3. Wei et al. introduced
a TVAR framework using Reduced Inductive Semantics for µ-calculus under which the
results of model-checking GKMTS and MixTS are equivalent [121].

Definition 5.1.6. A Generalized KMTS (GKMTS) is a tuple (S, S0, R
may, Rmust, L) where

S, S0, R
may, and L follow Definition 5.1.5 and Rmust : S× 2S is the set of hyper-transitions,

where ∀(a,B) ∈ Rmust . ∀b ∈ B . (a, b) ∈ Rmay.

Definition 5.1.7. A Mixed Transition System (MixTS) is a tuple (S, S0, R
may, Rmust, L)

where S, S0, R
may, and L follow Definition 5.1.5 and Rmust ⊆ S × S.

3An instance of the framework is implemented in the tool Yasm [122], available online at the time of
writing [138]. However, we found that it does not support language elements such as bitwise-operation
statements (e.g. x = x & 1), which our machine-code verification tool focuses on.

54



5.1. Previous Work
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(a) Only state “XXX”.
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(f) GKMTS after refining “0XX” in (e) by
splitting to “000”, “001”, “010”, and “011”.

Figure 5.2: State-based refinement with hyper-transitions based on Generalised KMTS.
Implied may-transitions, present in all sub-figures except for (c), are not drawn. The
states where it is unknown whether msb or ¬msb holds are drawn grey.

Example 5.1.8. We will prove EF[AG[msb]] using state-based TVAR over the system
from Figure 5.1, starting with abstract state set {“XXX”}. Clearly, we both may and
must transition from “XXX” to “XXX”, visualised in Figure 5.2a. Since msb is unknown
in “XXX”, the model-checking result is unknown and we refine.

Suppose we decide to split to {“0XX”, “1XX”}, starting in “0XX”. From “0XX”, we
may transition either to “0XX” (e.g. by 000 → 001 or 010 → 010) or “1XX” (e.g. by
010 → 110), but cannot conclude that e.g. a transition from “0XX” to itself must exist:
011 ∈ γ(“0XX”) only transitions to 111 ̸∈ γ(“0XX”).

PKS cannot be used as they cannot describe unknown-presence transitions. KMTS
allow this, producing Figure 5.2b. However, it is not possible to prove e.g. EX[true],
which was possible in Figure 5.2a, i.e. the refinement is not monotone. Using MixTS, we
retain “XXX” and the must-transitions to it, producing a forced choice in Figure 5.2c.
Using GKMTS, we obtain Figure 5.2d instead. In both, it is possible to prove EX[true],
but not EF[AG[msb]]. Refining further using GKMTS, we obtain Figure 5.2e, where it
is still not possible to prove EF[AG[msb]]: the hyper-transitions do not imply that the
path (“0XX”,“11X”,“10X”) corresponds to a concrete path. The property is only proven
after additional refinement to Figure 5.2f. While the final GKMTS trivially corresponds
to KMTS or PKS, in general, fewer refinements may be needed using GKMTS or MixTS,
and they may guide the refinement better due to monotonicity.

Model checking. µ-calculus properties can be model-checked on PKS and KMTS by a
simple conversion to two KS, applying standard model-checking algorithms, and combining
the results [130, 132]. Similar conversions are also possible for multi-valued logics [139, 140],
although a multi-valued model-checker was used for the MixTS approach [120].
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Discussion of previous TVAR frameworks. It was recognised early on that using
KMTS with non-monotone refinement is problematic [117, 118]. GKTMS seem more sus-
ceptible to exponential explosion as MixTS can make use of abstract domains. However,
specialised algorithms must be used for MixTS to obtain GKMTS-equivalent results [121].
A drawback of all mentioned approaches is their conceptual complexity which, in our opin-
ion, is the main reason for the dearth of available TVAR tools and test sets, compared to
CEGAR. This has also made the analysis of these methods difficult, as illustrated by the
subtle differences in definitions of expressiveness identified by Gazda & Willemse [141].

5.1.2 Simulation-Splitting Approaches
The mentioned TVAR frameworks first choose the set of abstract states, then compute the
transitions. We identified this as the reason why KMTS, GKMTS, or MixTS are necessary,
as opposed to simple PKS. We now discuss non-TVAR abstract techniques that start in
the initial state(s) and build the state space iteratively, by simulation. Simply building the
state space as in Figure 5.3a produces a PKS. The question is how to refine without modal
transitions. We consider two notable approaches where soundness is guaranteed only when
proving linear-time properties (no “false positives”), focusing on how the simulation is split.

Trajectory Evaluation. Bryant used three-valued simulation, widely available in
logic simulators, for formal verification of hardware circuits [123, 125]. He showed linear-
time properties (expressed by specification machines or circuit assertions) can be proven
using a set of three-valued input sequences that together cover all concrete inputs [123,
p. 320] by generating permissible state sequences, i.e. trajectories [124]. Symbolic trajectory
evaluation (STE) is an extension that allows parametrisation of the introduced trajectory
formulas [124]. However, the STE formalism drops the distinction between inputs and
states, treating inputs as a part of the previous state. We refer to Melham [142] for
a discussion of STE and extensions. Notably, Generalized STE [143] allows verification
of ω-regular properties using infinite trajectories, corresponding to acceptance by Büchi
automata and linear-time µ-calculus [144]. While manual refinement was originally needed,
automatic refinement was proposed for both STE [145] and GSTE [146].

Delayed Nondeterminism. Noll & Schlich [4] verified machine-code programs by
model-checking an abstract state space generated by a simulation-based approach. Each
input bit was read as ‘X’ and split to ‘0’ and ‘1’ only when it was decided to in a subsequent
step (e.g. if it was an argument of a branch instruction). This allowed e.g. splitting only
one bit of a read 8-bit port if the other bits were masked out by a constant first, soundly
proving ACTL properties.

Example 5.1.9. Due to the approach restrictions, we will illustrate proving the property
“in two steps from the initial state, the most significant bit corresponds to the least signif-
icant bit”, i.e. A[X[X[msb ⇔ lsb]]]. Simulating without splitting, we produce Figure 5.3a,
unable to prove the property.
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(a) Abstract state space corresponding to the system in Figure 5.1,
computed by simulation with unconstrained inputs (‘X’)

000Case 1. system 001 010 X10

00
Xspecification 01

X
10
1

11
X

000Case 2. system 011 111 10X

00
Xspecification 01

X
10
1

11
X

0 X X

0 X X

1 X X

1 X X

(b) Trajectory evaluation: The verification is split into cases, ensuring the
abstract input sequences together cover all possible concrete input sequences.
Unlike Bryant, we use initial states for consistency with other approaches.

000start 0X1 010
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10X

d.001

d.011

(c) Delayed nondeterminism augmented with must-transitions: the ‘X’ in state
“0X1” is split to ‘0’ and ‘1’ before computing the successor

Figure 5.3: Simulation-based approaches proving A[X[X[msb ⇔ lsb]]]. (a) can be consid-
ered PKS or KMTS, and (c) KTMS. (b) contains four trajectories. Specially in this figure,
system states are drawn green if msb ⇔ lsb holds, orange if it does not, and grey if it is
unknown. Specification states are coloured according to the output.

To visualise Bryant’s trajectory evaluation approach with explicitly considered inputs
[123], we encode the specification as a finite-state machine with two bits containing an
initially-zero saturating counter. The system output function is msb ⇔ lsb. The spec-
ification outputs ‘1’ iff the counter is 10 and ‘X’ otherwise. To prove the property, we
split verification into two cases based on the value of the first input, and obtain simulated
trajectories of both machines in Figure 5.3b. The property is proven as the trajectories are
long enough (at least 3 for the given property) and the specification output always covers
the system output.

To better understand Delayed Nondeterminism, we augment with must-transitions
where possible. Splitting “0X1” from Figure 5.3a, we obtain Figure 5.3c, where “010”
is obtained as a direct successor of “001”, and “111” as a direct successor of “011”. We
cannot augment during the split as ‘X’ might not generally correspond to a unique input,
potentially e.g. being copied before splitting.
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5.2 Input-based Abstraction Refinement
We propose a framework that eliminates the need for modal transitions in TVAR by com-
bining the ideas from the discussed approaches: using TVAR, build the abstract state
space by simulation and split inputs instead of states. We also allow for refining the step
function to avoid simulating uninteresting details.

Example 5.2.1. We return to the original problem of proving EF[AG[msb]]. Using the
simulation-based approach, we initially build the abstract state space as shown in Figure
5.3a. After that, we decide (using e.g. a heuristic, machine-learning or human guidance)
that the input after “000” should be split. We regenerate the abstract state space as shown
in Figure 5.4a. We are immediately able to prove EF[AG[msb]] holds, meaning the system
from Figure 5.1 contains a bug.

The part of the abstract state space in Figure 5.4a starting with “001” is unnecessarily
large for proving the property, potentially causing exponential explosion problems. To
prevent them, we also introduce a way to soundly and precisely regulate the outgoing
states of transitions, allowing us to e.g. replace “001” by “XXX” as in Figure 5.4b when
generating the abstract state space, decaying to less information. Only one refinement was
necessary compared4 to multiple in Example 5.1.8, with the final state space in Figure 5.4b
smaller than in Figure 5.2f. However, this depends on the correct choice to decay “001”
and not “011”.

The generated state spaces are PKS, which allows us to use previous work on PKS,
KMTS, GKMTS, and MixTS, as PKS are trivially convertible to all. This notably includes
model-checking using standard formalisms [130, 132] and refinement guidance [118, 133,
134], with the caveat that we need to select an input instead of a state to refine. Unlike
(G)STE and Delayed Nondeterminism which were limited to linear-time properties, the
approach can be used for the full µ-calculus. Our framework also allows for precise control
of the number of reachable abstract states and transitions: we can split inputs up to one
by one, and decay any newly reachable states before refining the decay.

We will now give the framework formalism and simple requirements for its instances
to be sound, monotone, and complete, proving that the requirements are sufficient in
Section 5.3. Finally, we will evaluate an implementation of an instance of our framework
in machine-check in Section 5.4.

5.2.1 Framework Formalism
We assume that the original Kripke Structure has only one initial state5, i.e. the structure
is K = (S, {s0}, R, L). We write the result of model-checking a property ϕ against K as
JϕK(K), which returns 0 or 1. For a PKS K̂, JϕK(K̂) returns 0, 1, or ⊥.

4General verification performance depends drastically on abstraction, refinement, and implementation
choices, further discussed in Section 5.4.

5This is merely a formal choice. For multiple initial states, a dummy initial state can be introduced
before them and the verified property ϕ converted to AX[ϕ].
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Figure 5.4: Input-based Abstraction Refinement.

We consider the original (concrete) system to be an automaton and will also use au-
tomata for abstracting the system, introducing the formalism of generating automata that
can generate partial Kripke structures.

Definition 5.2.2. A generating automaton (GA) is a tuple G = (S, s0, I, q, f, L) with the
elements

◦ S (the set of automaton states),
◦ s0 ∈ S (the initial state),
◦ I (the set of all step inputs),
◦ q : S → 2I \ {∅} (the input qualification function),
◦ f : S × I → S (the step function),
◦ L : S × A→ {0, 1,⊥} (the labelling function).

Definition 5.2.3. For a generating automaton (S, s0, I, q, f, L), we define the PKS-genera-
ting function Γ as

Γ((S, s0, I, q, f, L)) def= (S, {s0}, R, L) (5.1)
where R = {(s, f(s, i)) | s ∈ S, i ∈ q(s)}. (5.2)

We call a generating automaton G = (S, s0, I, q, f, L) concrete if the labelling function
L : S × A → {0, 1} (disallowing the value ⊥) and for all s ∈ S, q(s) = I. A concrete
GA corresponds to a Moore machine with the output of each state mapping each atomic
proposition from A to either 0 or 1.

Algorithm 5.1 describes our framework. Given a concrete GA, it abstracts it to an
abstract generating automaton (Ŝ, ŝ0, Î , q̂, f̂ , L̂), successively refining the input qualification
function q̂ and step function f̂ until the result of model-checking is non-⊥. Ŝ and Î are
related to S and I by a state concretization function6 γ : Ŝ → 2S \ {∅} and an input
concretization function ζ : Î → 2I \ {∅}.

6We forbid abstract elements with no concretizations as they do not represent any concrete element.
Practically speaking, this does not disqualify abstract domains with such elements, we just require such
elements are not produced by ŝ0, q̂, or f̂ .
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Algorithm 5.1: Input-based Three-valued Abstraction Refinement Framework
Require: a concrete generating automaton (S, s0, I, q, f, L), a µ-calculus property ϕ
Ensure: return JϕK((S, s0, I, q, f, L)) ▷ If requirements are fulfilled, see Corollary 5.2.8

(Ŝ, ŝ0, Î , q̂, f̂ , L̂)← Abstract(S, s0, I, q, f, L)
while (r ← JϕK(Γ((Ŝ, ŝ0, Î , q̂, f̂ , L̂))) = ⊥ do

(q̂, f̂)← Refine(Ŝ, ŝ0, Î , q̂, f̂ , L̂)
end while
return r

Unlike state-based TVAR, the set of abstract states Ŝ does not change during refine-
ment. The number of states to be considered is limited by the codomain of f̂ , allowing
structures such as Binary Decision Diagrams to be used. The abstract state space can be
built quickly by forward simulation. For backward simulation, care must be taken to pair
the states according to inputs.

Example 5.2.4. In machine-check, states and inputs are composed of bit-vector and
bit-vector-array variables, formally represented by flattened S = {0, 1}w and I = {0, 1}y

for finite state width w and finite input width y. A dummy s0 precedes the actual initial
system states, f is a function written in an imperative programming language, and L
computes relational operations on state variables.

For the abstract GA, we use three-valued bit-vector abstraction [8, 4] with fast abstract
operations [A.1], abstracting as

γbit(â) = {v ∈ B | (v = 0⇒ â ̸= ‘1’) ∧ (v = 1⇒ â ̸= ‘0’)}, (5.3a)
Ŝ = {‘0’, ‘1’, ‘X’}w, γ(ŝ) = {s ∈ S | ∀k ∈ [0, w − 1] . sk ∈ γbit(ŝk)}, (5.3b)
Î = {‘0’, ‘1’, ‘X’}y, ζ (̂i) = {i ∈ I . ∀k ∈ [0, y − 1] . ik ∈ γbit(̂ik)}. (5.3c)

Again, ŝ0 is a dummy state with γ(ŝ0) = {s0}. We rewrite the step function f into an
abstract function f̂basic : Ŝ × Î → Ŝ. To formalise the manipulation in Figure 5.4, we use
an input precision function p̂q̂ : Ŝ → {0, 1}y and a step precision function p̂f̂ : Ŝ → {0, 1}w.
The value 1 means we must keep the corresponding value of the bit in input or the result
of fbasic, respectively, precise, without replacing it with ‘X’.

For monotonicity, we ensure that we forbid clearing bits of p̂q̂ and p̂f̂ in subsequent
refinements after setting them to 1, and that we always set at least one bit of p̂q̂ or p̂f̂ in
each refinement, setting the bits until R in γ(Ĝ) changes. We also define the monotone
versions of the step and input precision functions as m̂q̂ : Ŝ → {0, 1}y and m̂f̂ : Ŝ → {0, 1}w,
respectively, defining their result in each bit k as

m̂q̂(ŝ)k = 1⇔ (∃ŝ∗ ∈ Ŝ . γ(ŝ∗) ⊆ γ(ŝ) ∧ p̂q̂(ŝ)k = 1), (5.4a)
m̂f̂ (ŝ)k = 1⇔ (∃ŝ∗ ∈ Ŝ . γ(ŝ∗) ⊆ γ(ŝ) ∧ p̂f̂ (ŝ)k = 1). (5.4b)
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We will show why m̂q̂, m̂f̂ are important for monotonicity in Example 5.2.14. We define
the result of q̂ and f̂ in each bit k by

(m̂q̂(ŝ)k = 0⇒ q̂(ŝ)k = {‘X’}) ∧ (m̂q̂(ŝ)k = 1⇒ q̂(ŝ)k = {‘0’, ‘1’}), (5.5a)
(m̂f̂ (ŝ)k = 0⇒ f̂(ŝ, î)k = ‘X’) ∧ (m̂f̂ (ŝ)k = 1⇒ f̂(ŝ, î)k = f̂basic(ŝ, î)k). (5.5b)

The usage of p̂q̂ and p̂f̂ allows fairly precise control of the size of the reachable abstract
state space. For example, if p̂q̂(ŝ) = (0)y, there is exactly one outgoing transition from ŝ

in R̂ generated by Γ(Ĝ). Each bit set to 1 increases that up to a factor of 2. Similarly, if
p̂f̂ (ŝ) = (0)w, there is exactly one outgoing transition to the “most-decayed” state (‘X’)w.

5.2.2 Soundness, Monotonicity, and Completeness
In this subsection, we state the requirements sufficient to ensure soundness (the algorithm
returns the correct result if it terminates), monotonicity (refinements never lose any in-
formation), and completeness (the algorithm always terminates). We defer the proofs to
Section 5.3.

To intuitively describe the requirements, we formalise the concept of coverage. An
abstract state ŝ or input î covers a concrete s ∈ S or i ∈ I exactly when s ∈ γ(ŝ) or
i ∈ ζ (̂i), respectively, and it covers another abstract state ŝ∗ ∈ Ŝ or input î∗ ∈ Î exactly
when γ(ŝ∗) ⊆ γ(ŝ) or ζ (̂i∗) ⊆ ζ (̂i), respectively.

We want abstraction to preserve the truth value of µ-calculus properties in the following
sense:

Definition 5.2.5. A partial Kripke structure K↑ is sound with respect to a partial Kripke
structure K↓ if, for every property ϕ of µ-calculus over the set of atomic propositions A, it
holds that

JϕK(K↑) ̸= ⊥ ⇒ JϕK(K↓) = JϕK(K↑). (5.6)

Intuitively, K↑ can contain less information than K↓, turning some non-⊥ proposition
results to ⊥. No other differences are possible.

To ensure the soundness of Algorithm 5.1, we use the following requirements. Soundness
is ensured with any refinement heuristic as long as they are met.

Definition 5.2.6. A generating automaton Ĝ = (Ŝ, ŝ0, Î , q̂, f̂ , L̂) is a soundness-guaran-
teeing (γ, ζ)-abstraction of a concrete generating automaton G = (S, s0, I, q, f, L) iff

γ(ŝ0) = {s0}, (5.7a)
∀ŝ ∈ Ŝ . ∀s ∈ γ(ŝ) . ∀a ∈ A . (L̂(ŝ, a) ̸= ⊥ ⇒ L̂(ŝ, a) = L(s, a)), (5.7b)
∀(ŝ, i) ∈ Ŝ × I . ∃î ∈ q̂(ŝ) . i ∈ ζ (̂i), (5.7c)
∀(ŝ, î) ∈ Ŝ × Î . ∀(s, i) ∈ γ(ŝ)× ζ (̂i) . f(s, i) ∈ γ(f̂(ŝ, î)). (5.7d)

Informally, the four requirements express the following:
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(a) Initial state concretization. The abstract initial state has exactly the concrete
initial state in its concretization.

(b) Labelling soundness. Each abstract state labelling must either correspond to the
labelling of all concrete states it covers or be unknown.

(c) Full input coverage. In every abstract state, each concrete input must be covered
by some qualified abstract input.

(d) Step soundness. Each result of the abstract step function must cover all results
of the concrete step function where its arguments are covered by the abstract step
function arguments.

The requirements ensure the soundness of the used abstractions as follows.

Theorem 5.2.7 (Soundness). For every generating automaton Ĝ and concrete generating
automaton G, state concretization function γ, and input concretization function ζ such
that Ĝ is a soundness-guaranteeing (γ, ζ)-abstraction of G, the partial Kripke structure
Γ(Ĝ) is sound with respect to Γ(G).

Corollary 5.2.8. Assume that the functions Abstract and Refine ensure that the
generating automaton (Ŝ, ŝ0, Î , q̂, f̂ , L̂) in Algorithm 5.1 is always a soundness-guaranteeing
(γ, ζ)-abstraction of (S, s0, I, q, f, L). Then, if the algorithm terminates, its result is correct.

Example 5.2.9. Continuing from Example 5.2.4, (5.7a) is fulfilled trivially. (5.7c) is
fulfilled due to (5.3c) and (5.5a). From (5.5b), it is apparent that

∀(ŝ, î) ∈ (Ŝ, Î) . γ(f̂basic(ŝ, î)) ⊆ γ(f̂(ŝ, î)), (5.8)

i.e. results of f̂ cover results of f̂basic that abstracts f . We carefully implemented the
translation of f to f̂basic and L̂ so that (5.7b) and (5.7d) hold.

Next, we turn to monotonicity, which ensures no algorithm loop iteration loses infor-
mation. We give the requirements for the refinement to guarantee it.

Definition 5.2.10. A generating automaton (Ŝ, ŝ0, Î , q̂, f̂ , L̂) is monotone wrt. (γ, ζ)-
coverage iff

∀(ŝ, ŝ′, a) ∈ Ŝ × Ŝ × A .

((γ(ŝ′) ⊆ γ(ŝ) ∧ L̂(ŝ, a) ̸= ⊥)⇒ L̂(ŝ, a) = L(ŝ′, a)),
(5.9a)

∀(ŝ, ŝ′, î, î′) ∈ Ŝ × Ŝ × Î × Î .
((γ(ŝ′)× ζ (̂i′) ⊆ γ(ŝ)× ζ (̂i))⇒ γ(f̂(ŝ′, î′)) ⊆ γ(f̂(ŝ, î)).

(5.9b)

Informally, we require that each abstract state has at least as much labelling information
as each abstract state it covers, and the abstract step function result covers each result
produced using covered arguments.
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Definition 5.2.11. The generating automaton (Ŝ, ŝ0, Î , q̂
′, f̂ ′, L̂) is a (γ, ζ)-monotone re-

finement of the generating automaton (Ŝ, ŝ0, Î , q̂, f̂ , L̂) iff it is monotone wrt. (γ, ζ)-
coverage and

∀ŝ ∈ Ŝ . ∀î′ ∈ q̂′(ŝ) . ∃î ∈ q̂(ŝ) . ζ (̂i′) ⊆ ζ (̂i), (5.10a)
∀ŝ ∈ Ŝ . ∀î ∈ q̂(ŝ) . ∃î′ ∈ q̂′(ŝ) . ζ (̂i′) ⊆ ζ (̂i), (5.10b)
∀(ŝ, î) ∈ Ŝ × Î . γ(f̂ ′(ŝ, î)) ⊆ γ(f̂(ŝ, î)). (5.10c)

Informally, in addition to the monotonicity wrt. coverage, we also require:

(a) New qualified inputs are not spurious. Each new qualified input is covered by at
least one old qualified input.

(b) Old qualified inputs are not lost. Each old qualified input covers at least one new
qualified input.

(c) New step function covered by old. The result of the new step function is always
covered by the result of the old step function.

The need for both quantifier combinations in the first two requirements in Equation 5.10
may be surprising. Their violations correspond to transition addition and removal, respec-
tively, which could make a previously non-⊥ property ⊥.

Theorem 5.2.12 (Monotonicity). If the generating automaton Ĝ′ is a (γ, ζ)-monotone
refinement of the generating automaton Ĝ, then for every µ-calculus property ψ for which
JψK(Γ(Ĝ)) ̸= ⊥, it also holds JψK(Γ(Ĝ′)) ̸= ⊥.

Corollary 5.2.13. If the update in the loop of Algorithm 5.1 performs a (γ, ζ)-monotone
refinement of the generating automaton (Ŝ, ŝ0, q̂, f̂ , L̂) and for a µ-calculus property ψ, it
held that JψK(Γ((Ŝ, ŝ0, q̂, f̂ , L̂))) ̸= ⊥ before the loop iteration, then this is also the case
after the iteration.

Example 5.2.14. Continuing from Example 5.2.9, to ensure monotonicity, we have to
ensure that (5.9) holds for each generating automaton used, and the (5.10) holds for every
refinement. We implemented L̂ and f̂basic so that they would fulfil (5.9a) and (5.9b). Still,
(5.9b) poses a major danger: if we used p̂q̂, p̂f̂ instead of m̂q̂, m̂f̂ in (5.5), it would be
possible to e.g. set them to all-zeros in a state ŝa and to all-ones in ŝb that covers it,
possibly violating (5.9b) for f̂ . Combining (5.4) and (5.5) ensures (5.9b) holds, with no
violation possible: m̂q̂, m̂f̂ would be all-ones for both ŝa and ŝb in this situation.

As we have forbidden clearing bits in p̂q after setting them, (5.10a) and (5.10b) follow
from (5.4a) and (5.5a). Analogously, as we have forbidden clearing bits in p̂f , (5.10c)
follows from (5.4b) and (5.5b).
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Definition 5.2.15. The generating automaton (Ŝ, ŝ0, Î , q̂
′, f̂ ′, L̂) is a strictly (γ, ζ)-mono-

tone refinement of the generating automaton (Ŝ, ŝ0, Î , q̂, f̂ , L̂) if it is a monotone refinement
and either

∃ŝ ∈ Ŝ . ∃î ∈ q̂(ŝ) . ∀î′ ∈ q̂′(ŝ) . ∃i ∈ ζ (̂i) . i ̸∈ ζ (̂i′), (5.11)
or ∃(ŝ, î) ∈ Ŝ × Î . ∃s ∈ γ(f̂(ŝ, î)) . s ̸∈ γ(f̂ ′(ŝ, î)). (5.12)

Example 5.2.16. Continuing from Example 5.2.14, we know each refinement is monotone.
In Example 5.3, we mentioned that we set at least one bit in p̂q̂ or p̂f̂ and we set them
until R in Γ(Ĝ) changes (just setting bits in p̂f̂ does not necessarily mean f̂ changes).
Consequently, q̂ or f̂ change as per (5.11) or (5.12), and the refinement is strictly monotone.

Theorem 5.2.17 (Completeness). If Ŝ and Î are finite, there is no infinite sequence of
generating automata that are soundness-guaranteeing (γ, ζ)-abstractions of some G such
that all subsequent pairs in the sequence are strictly (γ, ζ)-monotone refinements.

Corollary 5.2.18. If Ŝ, Î are finite, the functions Abstract and Refine in Algo-
rithm 5.1 ensure that (Ŝ, ŝ0, Î , q̂, f̂ , L̂) always is a soundness-guaranteeing (γ, ζ)-abstraction
of (S, s0, I, q, f, L), and calls of Refine perform strict (γ, ζ)-monotone refinements, then
the algorithm returns the correct result in finite time.

Fulfilling the requirements of Corollary 5.2.18 is not trivial. We must exclude the
situation when no strict (γ, ζ)-monotone refinement is possible any more while a non-⊥
result has not yet been reached. We propose Lemma 5.2.20 for easier reasoning.

Definition 5.2.19. A generating automaton Ĝ = (Ŝ, ŝ0, Î , q̂, f̂ , L̂) is (γ, ζ)-terminating
wrt. a concrete generating automaton G = (S, s0, I, q, f, L) if it is a (γ, ζ)-abstraction of
G monotone wrt. (γ, ζ)-coverage and

∀(s, ŝ) ∈ S × Ŝ . (γ(ŝ) = {s} ⇒ L̂(ŝ) = L(s)), (5.13a)
∀ŝ ∈ Ŝ . ∀î ∈ q̂(ŝ) . ∃i ∈ I . ζ (̂i) = {i}, (5.13b)
∀ŝ ∈ Ŝ . ∀i ∈ I . ∃î ∈ q̂(ŝ) . ζ (̂i) = {i}, (5.13c)
∀(ŝ, î, s, i)∈ Ŝ× Î×S×I.((γ(ŝ), ζ (̂i))=({s}, {i})⇒ γ(f̂(ŝ, î))={f(s, i)}). (5.13d)

Lemma 5.2.20 (Strict Refinement). If Ĝ is (γ, ζ)-terminating wrt. G, then for every µ-
calculus property ψ, JψK(Γ(Ĝ))=JψK(Γ(G)). Furthermore, if Ĝ is a soundness-guaranteeing
(γ, ζ)-abstraction of G for which some (γ, ζ)-monotone refinement is (γ, ζ)-terminating wrt.
G, then Ĝ itself is (γ, ζ)-terminating wrt. G or the refinement is strict.

Corollary 5.2.21. If every generating automaton constructed in Algorithm 5.1 fulfils the
conditions of Lemma 5.2.20, calls to Refine can always perform a strict (γ, ζ)-monotone
refinement to a soundness-guaranteeing (γ, ζ)-abstraction.
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Example 5.2.22. Continuing from Example 5.2.14, we implemented L̂, f̂basic so that they
fulfil (5.13a) and (5.13d). Since (5.13b) and (5.13c) hold due to (5.5a), Ĝ∗ obtained by
p̂q̂ = (1)y, p̂f̂ = (1)w is (γ, ζ)-terminating. Inspecting (5.10), Ĝ∗ is monotone wrt. all
other applicable GA, and Corollary 5.2.21 holds. As soundness was already ensured in
Example 5.2.9 and Ŝ, Î are finite by definition, Corollary 5.2.18 holds.

5.3 Proofs of Soundness, Monotonicity, and Complete-
ness

In this section, we will prove Theorems 5.2.7, 5.2.12, and 5.2.17. Since directly proving on µ-
calculus is cumbersome, we will typically prove the theorems by showing their requirements
imply that some PKS is sound wrt. another PKS as per Definition 5.2.6 using a well-known
property of modal simulation [41, p. 408-410], which we simplified from KMTS to PKS by
setting R = Rmay = Rmust.

Definition 5.3.1. Let K↓ = (S↓, S↓
0 , R

↓, L↓) and K↑ = (S↑, S↑
0 , R

↑, L↑) be PKS over the
set of atomic propositions A. Then H ⊆ S↓ × S↑ is a modal simulation from K↓ to K↑ if
and only if all of the following hold,

∀(s↓, s↑) ∈H .∀a ∈A . (L↑(s↑, a) ̸=⊥⇒ L↓(s↓, a) = L↑(s↑, a)), (5.14a)
∀(s↓, s↑) ∈H .∀s′↓ ∈ S↓. (R↓(s↓, s′↓)⇒∃s′↑ ∈ S↑. (R↑(s↑, s′↑)∧H(s′↓, s′↑))), (5.14b)
∀(s↓, s↑) ∈H .∀s′↑ ∈ S↑. (R↑(s↑, s′↑)⇒∃s′↓ ∈ S↓. (R↓(s↓, s′↓)∧H(s′↓, s′↑))). (5.14c)

Informally, H relates the states of K↓ and K↑ so that the states in the fine K↓ preserve
all known labellings of their related states from the coarseK↑, and transitions are respected:
for every pair of related states in H, each transition from one element of the pair must
correspond to at least one transition from the other element with the endpoints related by
H.

Definition 5.3.2. A PKS K↓ with initial state s↓
0 is modal-simulated by a PKS K↑ with

initial state s↑
0, denoted K↓ ⪯ K↑, if there is a modal simulation H from K↓ to K↑ and

furthermore,
∀s↓

0 ∈ S
↓
0 . ∃s

↑
0 ∈ S

↑
0 . H(s↓

0, s
↑
0). (5.15)

Property 5.3.3. K↑ is sound wrt. K↓ if K↓ ⪯ K↑ [41, p. 410] (original argument by Huth
et al. [147, p. 161]).

To simplify the proofs further, we first prove a criterion for generating automata that
ensures their corresponding Kripke structures are sound.
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Lemma 5.3.4. The PKS Γ(S↑, s↑
0, q

↑, f ↑, L↑) is sound wrt. Γ(S↓, s↓
0, q

↓, f ↓, L↓) if there
exists a relation H ⊆ S↓ × S↑ where

(s↓
0, s

↑
0) ∈ H, (5.16a)

∀(s↓, s↑) ∈ H . ∀a ∈ A . (L↑(s↑, a) ̸= ⊥ ⇒ L↓(s↓, a) = L↑(s↑, a)), (5.16b)
∀(s↓, s↑) ∈ H . ∀i↓ ∈ q↓(s↓) . ∃i↑ ∈ q↑(s↑) . H(f ↓(s↓, i↓), f ↑(s↑, i↑)), (5.16c)
∀(s↓, s↑) ∈ H . ∀i↑ ∈ q↑(s↑) . ∃i↓ ∈ q↓(s↓) . H(f ↓(s↓, i↓), f ↑(s↑, i↑)). (5.16d)

Proof. Let K↑ = Γ(S↑, s↑
0, q

↑, f ↑, L↑) and K↓ = Γ(S↓, s↓
0, q

↓, f ↓, L↓). We assume a relation
H ⊆ S↓ × S↑ satisfying (5.16a) to (5.16d) and use it to prove K↓ ⪯ K↑ which implies
soundness due to Property 5.3.3. Due to (5.16a), (5.15) holds, and it remains to prove
(5.14). (5.14a) directly follows from (5.16b). To prove (5.14b) and (5.14c), we respectively
expand R↓ and R↑ according to Definition 5.2.3 to

∀(s↓, s↑) ∈ H . ∀s′↓ ∈ S↓ . (5.17a)
((∃i↓ ∈ q↓(s↓) . s′↓ = f ↓(s↓, i↓))⇒ ∃s′↑ ∈ S↑ . (R↑(s↑, s′↑) ∧H(s′↓, s′↑))),
∀(s↓, s↑) ∈ H . ∀s′↑ ∈ S↑ . (5.17b)

((∃i↑ ∈ q↑(s↑) . s′↑ = f ↑(s↑, i↑))⇒ ∃s′↓ ∈ S↓ . (R↓(s↓, s′↓) ∧H(s′↓, s′↑))).

We move the i↓, i↑ quantifiers out of the implication, negating them due to moving out of
antecedent. s′↓ and s′↑ must be equal to f ↓(s↓, i↓) and f ↑(s↑, i↑), respectively, so we replace
them and eliminate the quantifiers, obtaining

∀(s↓, s↑) ∈ H. ∀i↓ ∈ q↓(s↓) . ∃s′↑ ∈ S↑ . (R↑(s↑, s′↑) ∧H(f ↓(s↓, i↓), s′↑)), (5.18a)
∀(s↓, s↑) ∈ H. ∀i↑ ∈ q↑(s↑) . ∃s′↓ ∈ S↓ . (R↓(s↓, s′↓) ∧H(s′↓, f ↑(s↑, i↑))). (5.18b)

We then respectively insert the definition of R↑ and R↓, pull the i↑, i↓ quantifiers outside,
and eliminate the s′↑, s′↓ variables, obtaining

∀(s↓, s↑) ∈ H . ∀i↓ ∈ q↓(s↓) . ∃i↑ ∈ q↑(s↑) . H(f ↓(s↓, i↓), f ↑(s↑, i↑)), (5.19a)
∀(s↓, s↑) ∈ H . ∀i↑ ∈ q↑(s↑) . ∃i↓ ∈ q↓(s↓) . H(f ↓(s↓, i↓), f ↑(s↑, i↑)), (5.19b)

which correspond to the assumed (5.16c) and (5.16d).

5.3.1 Proof of Soundness
Proof (Theorem 5.2.7). Assume generating automata Ĝ = (Ŝ, ŝ0, Î , q̂, f̂ , L̂) and G =
(S, s0, I, q, f, L), state concretization function γ, and input concretization function ζ such
that Ĝ is a soundness-guaranteeing (γ, ζ)-abstraction of G. Our goal is to prove that Γ(Ĝ)
is sound wrt. Γ(G). For this, we prove that

H = {(s, ŝ) ∈ S × Ŝ | s ∈ γ(ŝ)} (5.20)
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satisfies the conditions of Lemma 5.3.4 which implies that Γ(Ĝ) is sound wrt. Γ(G).
Conditions (5.16a) and (5.16b) hold due to (5.7a) and (5.7b), respectively. We use the
definition of H and the fact that G is concrete to rewrite (5.16c) and (5.16d) to

∀ŝ ∈ Ŝ . ∀s ∈ γ(ŝ) . ∀i ∈ I . ∃î ∈ q̂(ŝ) . f(s, i) ∈ γ(f̂(ŝ, î)), (5.21a)
∀ŝ ∈ Ŝ . ∀s ∈ γ(ŝ) . ∀î ∈ q̂(ŝ) . ∃i ∈ I . f(s, i) ∈ γ(f̂(ŝ, î)). (5.21b)

Informally, from each concrete state covered by an abstract state, (5.21a) requires that
each concrete step result is covered by some abstract step result, and (5.21b) requires that
each abstract step result covers some concrete step result.

To prove (5.21a), we assume ŝ ∈ Ŝ, s ∈ γ(ŝ), i ∈ I to be arbitrary but fixed. From
(5.7c), we know that we can choose some î ∈ q̂(ŝ) for which i ∈ ζ (̂i).

To prove (5.21b), we assume ŝ ∈ Ŝ, s ∈ γ(ŝ), î ∈ q̂(ŝ) to be arbitrary but fixed. As
ζ : Î → 2I \ {∅}, we can always choose some i ∈ ζ (̂i).

In both situations, our assumptions include s ∈ S, ŝ ∈ γ(ŝ), î ∈ q̂(ŝ), i ∈ ζ (̂i), and it
remains to prove f(s, i) ∈ γ(f̂(ŝ, î)). This follows from (5.7d).

5.3.2 Proof of Monotonicity
Proof (Theorem 5.2.12). We assume that Ĝ′ = (Ŝ, ŝ0, Î , q̂

′, f̂ ′, L̂) is a (γ, ζ)-monotone
refinement of the generating automaton Ĝ = (Ŝ, ŝ0, Î , q̂, f̂ , L̂). We prove that for every
µ-calculus property ψ for which JψK(Γ(Ĝ)) ̸= ⊥, also JψK(Γ(Ĝ′)) ̸= ⊥. For this, it suffices
to prove that Γ(Ĝ) is sound wrt. Γ(Ĝ′). Using

H
def= {(ŝ′, ŝ) ∈ Ŝ × Ŝ | γ(ŝ′) ⊆ γ(ŝ)}, (5.22)

we will prove that (5.16) holds for G↓ def= Ĝ′, G↑ def= Ĝ. Formula (5.16a) holds trivially,
and (5.16b) holds due to (5.9a). Assuming that ŝ′ ∈ Ŝ, ŝ ∈ Ŝ are arbitrary but fixed and
γ(ŝ′) ⊆ γ(ŝ) holds, we rewrite (5.16c) and (5.16d) to

∀î′ ∈ q̂′(ŝ′) . ∃î ∈ q̂(ŝ) . γ(f̂ ′(ŝ′, î′)) ⊆ γ(f̂(ŝ, î)), (5.23a)
∀î ∈ q̂(ŝ) . ∃î′ ∈ q̂′(ŝ′) . γ(f̂ ′(ŝ′, î′)) ⊆ γ(f̂(ŝ, î)). (5.23b)

To prove (5.23a), we assume î′ ∈ q̂′(ŝ′) arbitrary but fixed and choose î ∈ q̂(ŝ) for which
ζ (̂i′) ⊆ ζ (̂i), which exists due to (5.10a).

To prove (5.23a), we assume î ∈ q̂(ŝ) arbitrary but fixed and choose î′ ∈ q̂′(ŝ′) for which
ζ (̂i′) ⊆ ζ (̂i), which exists due to (5.10b).

In both situations, it remains to prove γ(f̂ ′(ŝ′, î′)) ⊆ γ(f̂(ŝ, î)). From the assumed
(5.10c), we strengthen this to γ(f̂(ŝ′, î′)) ⊆ γ(f̂(ŝ, î)). This follows from (5.9b), given our
other assumptions about ŝ, ŝ′, î, î′.
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5.3.3 Proof of Completeness
Proof (Theorem 5.2.17). We assume a sequence satisfying the preconditions of the
theorem and show that it cannot be infinite. For each Ĝ in the sequence, we define a
function MĜ(ŝ) = (QĜ(ŝ), FĜ(ŝ)) where

QĜ(ŝ) = {ζ (̂i) | î ∈ q̂Ĝ(ŝ)}, FĜ(ŝ) = {(̂i ∈ Î , γ(f̂Ĝ(ŝ, î)))}, (5.24)

and will prove it cannot be equal for two different elements of the sequence named Ĝ and
Ĝ∗. We name the element after Ĝ as Ĝ′, it is a strict (γ, ζ)-monotone refinement of Ĝ. Ĝ∗

is a (γ, ζ)-monotone refinement of both Ĝ and Ĝ′ as Definition 5.2.11 is clearly transitive
and reflexive.

Case 1. The strict refinement is due to (5.11). For some ŝ ∈ Ŝ, there is an î ∈ q̂(ŝ)
not covered by any î′ ∈ q̂(ŝ), so ζ (̂i) ∈ QĜ(ŝ) but ζ (̂i) ̸∈ QĜ′(ŝ). Due to (5.10a) from Ĝ′ to
Ĝ∗, ζ (̂i) ̸∈ QĜ∗(ŝ), so MĜ ̸= MĜ∗ .

Case 2. The strict refinement is due to (5.12). There is some pair (ŝ, î) ∈ Ŝ× Î where
for some s ∈ γ(f̂(ŝ, î)), s ̸∈ γ(f̂ ′(ŝ, î)). As such, s ∈ FĜ(ŝ)(̂i) but s ̸∈ FĜ′(ŝ)(̂i). Due to
(5.10c) from Ĝ′ to Ĝ∗, s ̸∈ FĜ∗(ŝ)(̂i), so MĜ ̸= MĜ∗ .

For each ŝ ∈ Ŝ, Q̂(ŝ) has less than 2|Î| valuations. For each pair (ŝ, î) ∈ Ŝ × Î, F (ŝ)(̂i)
has less than 2|Ŝ| valuations. As such, there are less than |S|(2|Î| + |I|2|Ŝ|) valuations of
M̂ . Since we assume Ŝ, Î finite, this completes the proof.
Proof (Lemma 5.2.20).

First part. We will first prove the claim that if Ĝ is (γ, ζ)-terminating wrt. G, then
for every µ-calculus property ψ, JψK(Γ(Ĝ)) = JψK(Γ(G)). Since G is a concrete generating
automaton, JψK(Γ(G)) ̸= ⊥, and it suffices to prove Γ(G) is sound wrt. Γ(Ĝ). Using
Lemma 5.3.4, we define H as

H
def= {(ŝ, s) | γ(ŝ) = {s}}. (5.25)

(5.16a) and (5.16b) hold due to (5.7a) and (5.13a), respectively. We rewrite (5.16c) and
(5.16d) as

∀(ŝ,s)∈ Ŝ×S . (γ(ŝ) = {s}⇒∀î∈ q̂(ŝ) .∃i∈ I . γ(f̂(ŝ, î)) = {f(s,i)}), (5.26a)
∀(ŝ,s)∈ Ŝ×S . (γ(ŝ) = {s}⇒∀i∈ I . ∃î∈ q̂(ŝ) . γ(f̂(ŝ, î)) = {f(s,i)}). (5.26b)

We assume (ŝ, s) ∈ Ŝ × S arbitrary but fixed and γ(ŝ) = {s} to hold.
To prove (5.26a), we assume î ∈ q̂(ŝ) arbitrary but fixed and choose i ∈ I for which

ζ (̂i) = {i}, which exists due to (5.13b).
To prove (5.26b), we assume i ∈ I arbitrary but fixed and choose î ∈ q̂(ŝ) for which

ζ (̂i) = {i}, which exists due to (5.13c).
Second part. We turn to the claim that if Ĝ is a soundness-guaranteeing (γ, ζ)-

abstraction of G for which some (γ, ζ)-monotone refinement Ĝ∗ is (γ, ζ)-terminating wrt.
G, then either Ĝ itself is (γ, ζ)-terminating wrt. G or the refinement is strict. We will prove
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this by assuming Ĝ is not (γ, ζ)-terminating and proving that Ĝ∗ is a strict (γ, ζ)-monotone
refinement of Ĝ.

As per Definition 5.2.15, we are to prove either (5.11) or (5.12) holds for the refinement
from Ĝ to Ĝ∗. Since Ĝ is not guaranteed-terminating, at least one of (5.13a), (5.13b),
(5.13c), (5.13d) does not hold.

Case (a). (5.13a) does not hold for Ĝ. However, Ŝ, Î, and L̂ are the same for Ĝ∗, and
we already assumed (5.13a) for Ĝ∗. This is a contradiction and so this case cannot occur.

Case (b). (5.13b) does not hold for Ĝ, but we have assumed it holds for Ĝ∗, i.e.

∃ŝ ∈ Ŝ . ∃î ∈ q̂(ŝ) . ∀i ∈ I . ζ (̂i) ̸= {i}. (5.27a)
∀ŝ ∈ Ŝ . ∀î∗ ∈ q̂∗(ŝ) . ∃i∗ ∈ I . ζ (̂i∗) = {i∗}. (5.27b)

We will prove that (5.11) holds for the refinement from Ĝ to Ĝ∗, i.e.

∃ŝ ∈ Ŝ . ∃î ∈ q̂(ŝ) . ∀î′ ∈ q̂∗(ŝ) . ∃i ∈ ζ (̂i) . i ̸∈ ζ (̂i′). (5.28)

We fix ŝ, î from (5.27a) and choose them in (5.28). For all î′ ∈ q̂∗(ŝ), clearly |γ(̂i′)| = 1
due to (5.27b). However, due to (5.27a) and ζ not returning ∅, |γ(̂i)| > 1. As such, for any
î′ ∈ q̂∗(ŝ), there exists i ∈ ζ (̂i) such that i ̸∈ ζ (̂i′).

Case (c). (5.13c) does not hold for Ĝ, i.e.

∃ŝ ∈ Ŝ . ∃i ∈ I . ∀î ∈ q̂(ŝ) . ζ (̂i) ̸= {i}. (5.29)

Since Ĝ is assumed to be a soundness-guaranteeing (γ, ζ)-abstraction of G, it must fulfil
the full input coverage requirement from (5.7c), i.e.

∀(ŝ, i) ∈ Ŝ × I . ∃î ∈ q̂(ŝ) . i ∈ ζ (̂i). (5.30)

Fixing ŝ ∈ Ŝ, i ∈ I from (5.29) and choosing them in (5.30), we combine both formulas to
obtain

(∀î ∈ q̂(ŝ) . ζ (̂i) ̸= {i}) ∧ (∃î ∈ q̂(ŝ) . i ∈ ζ (̂i)). (5.31)

We can weaken this to
∃î ∈ q̂(ŝ) . (i ∈ ζ (̂i) ∧ ζ (̂i) ̸= {i}). (5.32)

This implies ∃î ∈ q̂(ŝ) . |γ(̂i)| > 1, where i no longer appears. We reintroduce an existential
quantifier for ŝ,

∃ŝ ∈ Ŝ . ∃î ∈ q̂(ŝ) . |ζ (̂i)| > 1. (5.33)

This can be weakened to

∃ŝ ∈ Ŝ . ∃î ∈ q̂(ŝ) . ∀i ∈ I . ζ (̂i) ̸= {i}, (5.34)

which is the same as (5.27a) and we can complete proving this case using the argument
from Case (b).
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Case (d). (5.13d) does not hold for Ĝ but holds for Ĝ∗, i.e. it holds that

∃(ŝ, î, s, i) ∈ Ŝ × Î × S × I . ((γ(ŝ), ζ (̂i)) = ({s}, {i}) ∧ γ(f̂(ŝ, î)) ̸= {f(s, i)}), (5.35a)
∀(ŝ, î, s, i) ∈ Ŝ × Î × S × I . ((γ(ŝ), ζ (̂i)) = ({s}, {i})⇒ γ(f̂ ∗(ŝ, î)) = {f(s, i)}). (5.35b)

We fix ŝ, î, s, i from (5.35a) and choose them in (5.35b), obtaining

(γ(ŝ), ζ (̂i)) = ({s}, {i}) ∧ γ(f̂(ŝ, î)) ̸= {f(s, i)}, (5.36a)
(γ(ŝ), ζ (̂i)) = ({s}, {i})⇒ γ(f̂ ∗(ŝ, î)) = {f(s, i)}. (5.36b)

We therefore know γ(f̂(ŝ, î)) ̸= γ(f̂ ∗(ŝ, î)) and |γ(f̂ ∗(ŝ, î))| = 1. Due to assumed mono-
tonicity, we also know from (5.10c) that γ(f̂ ∗(ŝ, î)) ⊆ γ(f̂(ŝ, î)). Therefore, it must be the
case that

∃s ∈ γ(f̂ ∗(ŝ, î)) . s ̸∈ γ(f̂ ∗(ŝ, î)). (5.37a)

Reintroducing the quantifiers for ŝ, î, we obtain (5.12) from Ĝ to Ĝ∗, which completes the
proof.

5.3.4 Proof of the Strict Refinement Lemma
Proof (Lemma 5.2.20).

First part. We will first prove the claim that if Ĝ is (γ, ζ)-terminating wrt. G, then
for every µ-calculus property ψ, JψK(Γ(Ĝ)) = JψK(Γ(G)). Since G is a concrete generating
automaton, JψK(Γ(G)) ̸= ⊥, and it suffices to prove Γ(G) is sound wrt. Γ(Ĝ). Using
Lemma 5.3.4, we define H as

H
def= {(ŝ, s) | γ(ŝ) = {s}}. (5.38)

(5.16a) and (5.16b) hold due to (5.7a) and (5.13a), respectively. We rewrite (5.16c) and
(5.16d) as

∀(ŝ,s)∈ Ŝ×S . (γ(ŝ) = {s}⇒∀î∈ q̂(ŝ) .∃i∈ I . γ(f̂(ŝ, î)) = {f(s,i)}), (5.39a)
∀(ŝ,s)∈ Ŝ×S . (γ(ŝ) = {s}⇒∀i∈ I . ∃î∈ q̂(ŝ) . γ(f̂(ŝ, î)) = {f(s,i)}). (5.39b)

We assume (ŝ, s) ∈ Ŝ × S arbitrary but fixed and γ(ŝ) = {s} to hold.
To prove (5.26a), we assume î ∈ q̂(ŝ) arbitrary but fixed and choose i ∈ I for which

ζ (̂i) = {i}, which exists due to (5.13b).
To prove (5.26b), we assume i ∈ I arbitrary but fixed and choose î ∈ q̂(ŝ) for which

ζ (̂i) = {i}, which exists due to (5.13c).
Second part. We turn to the claim that if Ĝ is a soundness-guaranteeing (γ, ζ)-

abstraction of G for which some (γ, ζ)-monotone refinement Ĝ∗ is (γ, ζ)-terminating wrt.
G, then either Ĝ itself is (γ, ζ)-terminating wrt. G or the refinement is strict. We will prove
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this by assuming Ĝ is not (γ, ζ)-terminating and proving that Ĝ∗ is a strict (γ, ζ)-monotone
refinement of Ĝ.

As per Definition 5.2.15, we are to prove either (5.11) or (5.12) holds for the refinement
from Ĝ to Ĝ∗. Since Ĝ is not guaranteed-terminating, at least one of (5.13a), (5.13b),
(5.13c), (5.13d) does not hold.

Case (a). (5.13a) does not hold for Ĝ. However, Ŝ, Î, and L̂ are the same for Ĝ∗, and
we already assumed (5.13a) for Ĝ∗. This is a contradiction and so this case cannot occur.

Case (b). (5.13b) does not hold for Ĝ, but we have assumed it holds for Ĝ∗, i.e.

∃ŝ ∈ Ŝ . ∃î ∈ q̂(ŝ) . ∀i ∈ I . ζ (̂i) ̸= {i}. (5.40a)
∀ŝ ∈ Ŝ . ∀î∗ ∈ q̂∗(ŝ) . ∃i∗ ∈ I . ζ (̂i∗) = {i∗}. (5.40b)

We will prove that (5.11) holds for the refinement from Ĝ to Ĝ∗, i.e.

∃ŝ ∈ Ŝ . ∃î ∈ q̂(ŝ) . ∀î′ ∈ q̂∗(ŝ) . ∃i ∈ ζ (̂i) . i ̸∈ ζ (̂i′). (5.41)

We fix ŝ, î from (5.27a) and choose them in (5.28). For all î′ ∈ q̂∗(ŝ), clearly |γ(̂i′)| = 1
due to (5.27b). However, due to (5.27a) and ζ not returning ∅, |γ(̂i)| > 1. As such, for any
î′ ∈ q̂∗(ŝ), there exists i ∈ ζ (̂i) such that i ̸∈ ζ (̂i′).

Case (c). (5.13c) does not hold for Ĝ, i.e.

∃ŝ ∈ Ŝ . ∃i ∈ I . ∀î ∈ q̂(ŝ) . ζ (̂i) ̸= {i}. (5.42)

Since Ĝ is assumed to be a soundness-guaranteeing (γ, ζ)-abstraction of G, it must fulfil
the full input coverage requirement from (5.7c), i.e.

∀(ŝ, i) ∈ Ŝ × I . ∃î ∈ q̂(ŝ) . i ∈ ζ (̂i). (5.43)

Fixing ŝ ∈ Ŝ, i ∈ I from (5.29) and choosing them in (5.30), we combine both formulas to
obtain

(∀î ∈ q̂(ŝ) . ζ (̂i) ̸= {i}) ∧ (∃î ∈ q̂(ŝ) . i ∈ ζ (̂i)). (5.44)

We can weaken this to
∃î ∈ q̂(ŝ) . (i ∈ ζ (̂i) ∧ ζ (̂i) ̸= {i}). (5.45)

This implies ∃î ∈ q̂(ŝ) . |γ(̂i)| > 1, where i no longer appears. We reintroduce an existential
quantifier for ŝ,

∃ŝ ∈ Ŝ . ∃î ∈ q̂(ŝ) . |ζ (̂i)| > 1. (5.46)

This can be weakened to

∃ŝ ∈ Ŝ . ∃î ∈ q̂(ŝ) . ∀i ∈ I . ζ (̂i) ̸= {i}, (5.47)

which is the same as (5.27a) and we can complete proving this case using the argument
from Case (b).
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Case (d). (5.13d) does not hold for Ĝ but holds for Ĝ∗, i.e. it holds that

∃(ŝ, î, s, i) ∈ Ŝ × Î × S × I . ((γ(ŝ), ζ (̂i)) = ({s}, {i}) ∧ γ(f̂(ŝ, î)) ̸= {f(s, i)}), (5.48a)
∀(ŝ, î, s, i) ∈ Ŝ × Î × S × I . ((γ(ŝ), ζ (̂i)) = ({s}, {i})⇒ γ(f̂ ∗(ŝ, î)) = {f(s, i)}). (5.48b)

We fix ŝ, î, s, i from (5.35a) and choose them in (5.35b), obtaining

(γ(ŝ), ζ (̂i)) = ({s}, {i}) ∧ γ(f̂(ŝ, î)) ̸= {f(s, i)}, (5.49a)
(γ(ŝ), ζ (̂i)) = ({s}, {i})⇒ γ(f̂ ∗(ŝ, î)) = {f(s, i)}. (5.49b)

We therefore know γ(f̂(ŝ, î)) ̸= γ(f̂ ∗(ŝ, î)) and |γ(f̂ ∗(ŝ, î))| = 1. Due to assumed mono-
tonicity, we also know from (5.10c) that γ(f̂ ∗(ŝ, î)) ⊆ γ(f̂(ŝ, î)). Therefore, it must be the
case that

∃s ∈ γ(f̂ ∗(ŝ, î)) . s ̸∈ γ(f̂ ∗(ŝ, î)). (5.50a)

Reintroducing the quantifiers for ŝ, î, we obtain (5.12) from Ĝ to Ĝ∗, which completes the
proof.

5.4 Implementation and Experimental Evaluation
We implemented an instance of our proposed framework in the publicly available, free, and
open-source tool machine-check. In this section, we show how our framework is able to
mitigate exponential explosion7.

Implementation. We use three-valued bit-vector abstraction with explicit-state for-
ward simulation to build the state space, using CTL model-checking [148] to model-check
PKS [132]. We currently support and will experimentally evaluate three basic strategies
for the initial GA:

◦ Naïve. Initially p̂q̂(ŝ) = (1)y−1
k=0, p̂f̂ (ŝ) = (1)w−1

k=0 from all states ŝ ∈ Ŝ. The model-
checking result is immediately non-⊥ (no refinements occur).
◦ Input splitting. Instead, p̂q̂(ŝ) = (0)y−1

k=0, i.e. the qualified inputs are initially not
split, and a lasso-shaped PKS is generated initially, like in Figure 5.3a.
◦ Input splitting with decay. In addition, p̂f̂ (ŝ) = (0)w−1

k=0 , i.e. all step results
initially decay to the state (‘X’)w.

We deduce the refinements to be performed from the computed labellings, performing a
breadth-first search until a ⊥ labelling forcing the verified property to be ⊥ is found. We
then deduce which input or state bits imprecise due to p̂q̂, p̂f̂ could have caused that, choose
the refinement, update the state space (retaining unchanged parts), and recompute all

7The evaluation results together with the source code and scripts for their reproduction are available
in an artefact located at https://doi.org/10.5281/zenodo.15109048.
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labellings. We discuss the abstraction and refinement choices in more detail in Chapter 7.
Irrespective of refinement choices, machine-check is designed to be sound, monotone, and
complete, as discussed in Examples 5.2.4-5.2.22, notwithstanding possible bugs.

The choice of the implementation of monotone versions of input and step precision
from Example 5.2.4 is non-trivial: since the functions must be computed for each state
when building the state space, the complexity impact can be severe. We implemented
fast computation of them using a transitive reduction graph of the states with non-default
precisions and some of their covering states. When computing m̂q̂ or m̂f̂ as in (5.4), it is
then possible not to consider states where some state covering them is already known not
to be covered by the queried state.

Parametric systems. We verify recovery properties on a set of systems parametrised
by naturals V , U , C, and a Boolean determining if they are recoverable or not. Each input
is a tuple i = (n, z, r) where n has V bits, z has U bits, and r is a single bit that determines
whether the system should be reset. Each state is a tuple s = (v, u, c), where the V -bit
variable v is the running maximum of the input n, the U -bit variable u is loaded from the
input z in every step but otherwise unused and irrelevant, and the C-bit variable c is an
irrelevant free-running counter. The initial state is (0, 0, 0). The step functions are

fnon-recoverable((v, u, c), (n,w, r)) def= (max(v, n), w, c+ 1 mod 2C),

frecoverable((v, u, c), (n,w, r)) def= ((1− r) max(v, n), w, c+ 1 mod 2C),
(5.51)

Using machine-check, we verified AG[EF[v = 0]] for varying parameters, and visu-
alised the elapsed wall-time in Figure 5.5. Our framework implementation is fairly well-
behaved in regard to the parameters, with clear trends shown by the strategies.

◦ Naïve. Susceptible to exponential explosion in all shown cases, expected as it cor-
responds to model-checking without abstraction.
◦ Input splitting. Not susceptible to exponential explosion due to irrelevant unused

input assignments (middle column of Figure 5.5).
◦ Input splitting with decay. In addition, not susceptible to exponential explosion

due to irrelevant computations (right column of Figure 5.5).

The evaluation confirms generally expected TVAR behaviour, mitigating exponential
explosion stemming from irrelevant information. The price of refining, seen in the left
column of Figure 5.5, a shift of the trend curve upwards when introducing input splitting
and then also decay, is overshadowed by the mitigation effectiveness in the other columns.

The trends of the non-naïve strategies where mitigation did not succeed are super-
linear. This is due to the introduction of the monotone versions of input and step precision
in (5.4). We consider this to be a tradeoff for the granularity of precision: the problem
would not exist if the precisions were constant for all states within each refinement.

Experimental comparison to previous abstraction-refinement frameworks would be prob-
lematic, as the results would be dominated by the abstraction and refinement choices. That
said, CEGAR- and (G)STE-based approaches would be incapable of producing results com-
parable to Figure 5.5 because they cannot soundly verify AG[EF[v = 0]] at all.
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Figure 5.5: Wall-time elapsed during verification of the recovery property on a PC with
Ryzen 5600 CPU. In the upper-left corner, N > 6 was not measured for the input strategy
for feasibility reasons. Rising-line trends correspond to exponential explosion. Horizontal-
line trends show complete insensitivity to the independent variable, with no exponential
explosion. The unusually fast verification of the non-recoverable system with the input
splitting strategy is caused by quickly reaching a state where EF[v = 0] does not hold.

5.5 Further Notes
The introduced input-based TVAR framework forms the basis of machine-check, allowing
sound, monotone, and complete formal verification while being fairly simple to work with.
Unlike CEGAR-based frameworks, it can be used to verify branching-time properties.
While only verification of CTL properties is currently implemented, it could be enhanced
in the future, as the framework is general enough for the whole µ-calculus.

For quick verification of systems such as those used in the evaluation while using three-
valued abstraction, it is necessary to compute the results of arithmetic operations quickly
on the three-valued bit-vectors that form the states. In Chapter 6, I will present a technique
that accomplishes that. After that, I will discuss the implementation of machine-check in
more detail in Chapter 7, including an experimental evaluation on machine-code systems.
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Chapter 6
Abstract Three-valued
Bit-vector Arithmetic

As discussed in Chapter 2.1, one of the major commonalities of digital systems are oper-
ations on bit-vectors. Especially important are bitwise logical operations and fixed-point
wrap-around arithmetic. To formally verify such systems using model checking with ab-
straction, the bit-vectors must be abstracted somehow and manipulated with analogues of
the operations used on concrete bit-vectors.

For machine-code systems, it is advantageous to use the three-valued bit-vector ab-
straction, where each abstract bit can have value “zero”, “one”, or “perhaps one, perhaps
zero” (unknown). Using this abstraction, bit and bit-vector movement operations may be
performed directly on abstract bits.

Each movement operation produces a single abstract result, avoiding state space explo-
sion. The caveat is that overapproximation is incurred as relationships between unknown
values are lost. Bitwise logic operations (AND, OR, NOT. . . ) can be performed in three-
valued logic, producing a single abstract result without exponential explosion [8, 4].

When implementing the predecessor to machine-check, a verification tool introduced
in [A.4], I found that while it was effective to use three-valued bit-vector abstraction, arith-
metic operations still required instantiation of the unknown bits to enumerate all concrete
input possibilities, treating each arising output possibility as distinct. This would lead
not only to output computation time increasing exponentially based on the number of
unknown bits but also to the potential creation of multiple new states and the possibility
of severe state space explosion. For example, an operation with two 32-bit inputs and
a 32-bit output could require up to 264 concrete operation computations and could pro-
duce up to 232 new states. This prompted me to research how to quickly compute useful
results of arithmetic operations while using three-valued abstraction, with no possibility of
exponential explosion due to instantiation.
Note 6.0.1. This chapter is based on the contents of the paper [A.1] that I published
together with my supervisor, reworked for inclusion in this thesis. As the paper was a
joint work, I have retained the plural first-person pronouns (we) in the rest of this chapter.
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I was the main contributor, while my supervisor contributed mainly to the fast abstract
multiplication proofs in Section 6.6.

In this chapter, we formulate the forward operation problem, where an arbitrary oper-
ation performed on three-valued abstract bit-vector inputs results in a single three-valued
abstract bit-vector output which preserves the soundness of model checking. While the
best possible output can always be found in worst-case time exponential in the number of
three-valued input bits, this is slow for 8-bit binary operations and infeasible for higher
powers of two.

To aid with the construction of polynomial-time worst-case algorithms, we devise a
novel modular extreme-search technique. Using this technique, we find a linear-time algo-
rithm for abstract addition and a worst-case quadratic-time algorithm for abstract multi-
plication.

Our results allow model checkers that use the three-valued abstraction technique to com-
pute the state space faster and to manage its size by only performing instantiation when
necessary, reducing the risk of state space explosion.

6.1 Related Work
Many-valued logics have been extensively studied on their own, including Kleene logic [149]
used for three-valued model checking [8]. Previously, three-valued logic was used for static
program analysis of 8-bit microcontroller programs [58]. Binary decision diagrams (BDDs)
were used to compress input-output relationships for arbitrary abstract operations. This
resulted in high generation times and storage usage, making the technique infeasible to use
with 16-bit or 32-bit operands. These restrictions are not present in our approach where we
produce the abstract operation results purely algorithmically, but precomputation may still
be useful for abstract operations with no known worst-case polynomial-time algorithms.

In addition to machine-code analysis and verification, multi-valued logics are also widely
used for register-transfer level digital logic simulation. The IEEE 1164 standard [150]
introduces nine logic values, out of which ‘0’ (zero), ‘1’ (one), and ‘X’ (unknown) directly
correspond to three-valued abstraction. For easy differentiation between concrete values
and abstract values, we will use the IEEE 1164 notation in this paper, using single quotes
to represent an abstract bit as well as double quotes to represent an abstract bit-vector
(tuple of abstract bits). While we primarily consider microprocessor machine-code model
checking as our use case, we note that the presented algorithms also might be useful for
simulation, automated test pattern generation, and formal verification of digital circuits
containing adders and multipliers.

Yamane et al. [151] proposed that instantiation may be performed based only on in-
teresting variables. For example, if a status flag “zero” is of interest, a tuple of values
“XX” from which the flag is computed should be replaced by the possibilities {“00”, “1X”,
“X1”}. This leads to lesser state space explosion compared to naïve instantiation but is not
relevant for our discussion as we discuss avoiding instantiation entirely during operation
resolution.
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In the paper, we define certain pseudo-Boolean functions and search for their global
extremes. This is also called pseudo-Boolean optimisation [152]. Problems in this field are
often NP-hard. However, pseudo-Boolean functions for addition and multiplication that
we will use in this paper have special forms that will allow us to resolve the correspond-
ing problems in polynomial time without having to resort to advanced pseudo-Boolean
optimisation techniques.

6.2 Basic Definitions
Let us consider a binary concrete operation which produces a single M -bit output for each
combination of two N -bit operands, i.e. r : BN × BN → BM . We define the forward
operation problem as the problem of producing a single abstract bit-vector output given
supplied abstract inputs, preserving soundness. The output is not pre-restricted (the oper-
ation computation moves only forward). To preserve soundness, the abstract output must
contain all possible concrete outputs that would be generated by first performing instanti-
ation, receiving a set of concrete possibilities, and then performing the operation on each
possibility.

To easily formalise this requirement, we first formalise three-valued abstraction using
sets. Each three-valued abstract bit value (‘0’,‘1’,‘X’) identifies all possible values the
corresponding concrete bit can take. We define the abstract bit as a subset of B = {0, 1}
and the abstract bit values as

‘0’ def= {0}, ‘1’ def= {1}, ‘X’ def= {0, 1}. (6.1)

This formalisation corresponds exactly to the meaning of ‘X’ as “possibly 0, possibly 1”.
Even though ∅ is also a subset of B, it is never assigned to any abstract bit as there is
always at least a single output possibility.

If an abstract bit is either ‘0’ or ‘1’, we consider it known; if it is ‘X’, we consider it
unknown. For ease of representation in equations, we also introduce an alternative math-
style notation X̂

def= {0, 1}.
Next, we define abstract bit-vectors as tuples of abstract bits. For clarity, we use

hat symbols to denote abstract bit-vectors and abstract operations. We use zero-based
indexing for simplicity of representation and correspondence to typical implementations,
i.e. â0 means the lowest bit of abstract bit-vector â. We denote slices of the bit-vectors by
indexing via two dots between endpoints, i.e. â0..2 means the three lowest bits of abstract
bit-vector â. In case the slice reaches higher than the most significant bit of an abstract
bit-vector, we assume it to be padded with ‘0’, consistent with an interpretation as an
unsigned number.

6.2.1 Abstract Bit Encodings
In implementations of algorithms, a single abstract bit may be represented by various
encodings. First, we formalise a zeros-ones encoding of abstract bit âi using concrete bits
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a0
i ∈ B, a1

i ∈ B via

a0
i = 1 ⇐⇒ 0 ∈ âi, a

1
i = 1 ⇐⇒ 1 ∈ âi, (6.2)

which straightforwardly extends to bit-vectors a0, a1. Assuming â has A ∈ N0 bits, â ∈
(2B)A, while a0 ∈ BA, a1 ∈ BA, i.e. they are concrete bit-vectors.

We also formalise a mask-value encoding: the mask bit am
i = 1 exactly when the

abstract bit is unknown. When the abstract bit is known, the value bit av
i corresponds to

the abstract value (0 for ‘0’, 1 for ‘1’), as previously used in [8]. For simplicity, we further
require av

i = 0 if am
i = 1. We formalise the encoding of abstract bit âi using concrete bits

am
i ∈ B, av

i ∈ B via

am
i = 1 ⇐⇒ 0 ∈ âi ∧ 1 ∈ âi, a

v
i = 1 ⇐⇒ 0 /∈ âi ∧ 1 ∈ âi, (6.3)

which, again, straightforwardly extends to bit-vectors am ∈ BA and av ∈ BA. We note that
the encodings can be quickly converted via

a0
i = 1 ⇐⇒ am

i = 1 ∨ av
i = 0, a1

i = 1 ⇐⇒ am
i = 1 ∨ av

i = 1,
am

i = 1 ⇐⇒ a0
i = 1 ∧ a1

i = 1, av
i = 1 ⇐⇒ a0

i = 0 ∧ a1
i = 1.

(6.4)

We note that when interpreting each concrete possibility in abstract bit-vector â as an un-
signed binary number, av corresponds to the minimum, while a1 corresponds to the maxi-
mum. For conciseness and intuitiveness, we will not explicitly note the conversions in the
presented algorithms. Furthermore, where usage of arbitrary encoding is possible, we will
write the hat-notated abstract bit-vector, e.g. â.

6.2.2 Abstract Transformers
We borrow the notions defined in this subsection from abstract interpretation [153, 154],
adapting them for the purposes of this paper.

The set of concrete bit-vector possibilities given by a tuple containing A abstract bits,
â ∈ (2B)A, is given by a concretization function γ : (2B)A → 2(BA),

γ(â) def= {a ∈ BA | ∀i ∈ {0, . . . , A− 1} . ai ∈ âi}. (6.5)

Conversely, the transformation of a set of bit-vector possibilities C ∈ 2(BA) to a single
abstract bit-vector â ∈ (2B)A is determined by an abstraction function α : 2(BA) → (2B)A

which, to prevent underapproximation and to ensure soundness of model checking, must
fulfil C ⊆ γ(α(C)).

An abstract operation r̂ : (2B)N × (2B)N → (2B)M corresponding to concrete operation
r : BN × BN → BM is an approximate abstract transformer if it overapproximates r, that
is,

∀â ∈ (2B)N , b̂ ∈ (2B)N . {r(a, b) | a ∈ γ(â), b ∈ γ(b̂)} ⊆ γ(r̂(â, b̂)). (6.6)
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The number of concrete possibilities |γ(α(C))| should be minimised to prevent unnecessary
overapproximation. For three-valued bit-vectors, the best abstraction function αbest is
uniquely given by

∀i ∈ {0, . . . , A− 1} . (αbest(C))i
def= {ci ∈ B | c ∈ C}. (6.7)

By using αbest to perform the abstraction on the minimal set of concrete results from
Equation 6.6, we obtain the best abstract transformer for arbitrary concrete operation r,
i.e. an approximate abstract transformer resulting in the least amount of overapproxima-
tion, uniquely given as

r̂best
k (â, b̂) = αbest({rk(a, b) | a ∈ γ(â), b ∈ γ(b̂)}). (6.8)

We note that when no input abstract bit is ∅, there is at least one concrete result r(a, b)
and no output abstract bit can be ∅. Thus, three-valued representation is truly sufficient.

6.2.3 Algorithm Complexity Considerations
We will assume that the presented algorithms are implemented on a general-purpose pro-
cessor that operates on binary machine words and can compute bitwise operations, bit
shifts, addition and subtraction in constant time. Every bit-vector used fits in a machine
word. This is a reasonable assumption, as it is likely that the processor used for verifica-
tion will have the machine word size equal to or greater than the processor that runs the
program under consideration.

We also assume that the ratio of M to N is bounded, allowing us to express the
presented algorithm time complexities using only N . Memory complexity is not an issue
as the presented algorithms use only a fixed amount of temporary variables in addition to
the inputs and outputs.

6.2.4 Naïve Universal Abstract Algorithm
Equation 6.8 immediately suggests a naïve algorithm for computing r̂best for any given â, b̂:
enumerating all a, b ∈ 2(BN ), filtering out the ones that do not satisfy a ∈ γ(â) ∧ b ∈ γ(b̂),
and marking the results of r(a, b), which is easily done in the zeros-ones encoding. This
naïve algorithm has a running time of Θ(22N).

Average-case computation time can be improved by only enumerating unknown input
bits, but worst-case time is still exponential. Even for 8-bit binary operations, the worst-
case input combination (all bits unknown) would require 216 concrete operation computa-
tions. For 32-bit binary operations, it would require 264 computations, which is infeasible.
Finding worst-case polynomial-time algorithms for common operations is therefore of sig-
nificant interest.
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6.3 Formal Problem Statement
Theorem 6.3.1. The best abstract transformer of abstract bit-vector addition is com-
putable in linear time.

Theorem 6.3.2. The best abstract transformer of abstract bit-vector multiplication is
computable in worst-case quadratic time.

In Section 6.4, we will introduce a novel modular extreme-finding technique which will
use a basis for finding fast best abstract transformer algorithms. Using this technique,
we will prove Theorems 6.3.1 and 6.3.2 by constructing corresponding algorithms in Sec-
tions 6.5 and 6.6, respectively. We will experimentally evaluate the presented algorithms
to demonstrate their practical efficiency in Section 6.7.

6.4 Modular Extreme-Finding Technique
The concrete operation function r may be replaced by a pseudo-Boolean function h :
BN × BN → N0 where the output of r is the output of h written in base 2. Surely, that
fulfils

∀a ∈ BN , b ∈ BN ,∀k ∈ {0, . . . ,M − 1} .
rk(a, b) = 1 ⇐⇒ (h(a, b) mod 2k+1) ≥ 2k.

(6.9)

The best abstract transformer definition in Equation 6.8 is then equivalent to

∀k ∈ {0, . . . ,M − 1} .
(0 ∈ r̂best

k ⇐⇒ ∃a ∈ γ(â), b ∈ γ(b̂) . (h(a, b) mod 2k+1) < 2k) ∧
(1 ∈ r̂best

k ⇐⇒ ∃a ∈ γ(â), b ∈ γ(b̂) . (h(a, b) mod 2k+1) ≥ 2k).
(6.10)

The forward operation problem is therefore transformed into a problem of solving certain
modular inequalities, which is possible in polynomial time for certain operations. We will
later show that these include addition and multiplication.

If the inequalities were not modular, it would suffice to find the global minimum and
maximum (extremes) of h. Furthermore, the modular inequalities in Equation 6.10 can
be thought of as alternating intervals of length 2k. Intuitively, if it was possible to move
from the global minimum to the global maximum in steps of at most 2k by using different
values of a ∈ â, b ∈ b̂ in h(a, b), it would suffice to find the global extremes and determine
whether they are in the same 2k interval. If they were, only one of the modular inequalities
would be satisfied, resulting in known rk (either ‘0’ or ‘1’). If they were not, each modular
inequality would be satisfied by some a, b, resulting in rk = X̂.

We will now formally prove that our reasoning for this modular extreme-finding method
is indeed correct.

80



6.4. Modular Extreme-Finding Technique

Lemma 6.4.1. Consider a sequence of integers t = (t0, t1, . . . , tT −1) that fulfils

∀n ∈ [0, T − 2] . |tn+1 − tn| ≤ 2k. (6.11)

Then,

∃v ∈ [min t,max t] . (v mod 2k+1) < 2k ⇐⇒
∃n ∈ [0, T − 1] . (tn mod 2k+1) < 2k.

(6.12)

Proof. As the sequence t is a subset of range [min t,max t], the backward direction is
trivial. The forward direction trivially holds if v is contained in t. If it is not, it is
definitely contained in some range (v−, v+), where v−, v+ are successive values in the
sequence t. Considering successive values of x in the closed range [v−, v+], the valuation
of (x mod 2k+1) < 2k changes at most once, since |v+− v−| ≤ 2k. Therefore, the valuation
for the existing v must be the same as the valuation for v+, v−, or both. As both v+ and
v− are in the sequence t, this completes the proof.

Theorem 6.4.2. Consider a pseudo-Boolean function f : BN × BN → Z, two inputs â, b̂ ∈
(2B)N , and a sequence p = (p0, p1, . . . , pP −1) where each element is a pair (a, b) ∈ (γ(â), γ(b̂)),
that fulfil

∀n ∈ [0, P − 2] . |f(pn+1)− f(pn)| ≤ 2k,

f(p0) = min
a∈γ(â)
b∈γ(b̂)

f(a, b),

f(pP −1) = max
a∈γ(â)
b∈γ(b̂)

f(a, b).
(6.13)

Then,

∀C ∈ Z . (∃a ∈ γ(â), b ∈ γ(b̂) . ((f(a, b) + C) mod 2k+1) < 2k

⇐⇒ ∃n ∈ [0, P − 1] . ((f(pn) + C) mod 2k+1) < 2k).
(6.14)

Proof. Since each element of p is a pair (a, b) ∈ (γ(â), γ(b̂)), the backward direction is
trivial. For the forward direction, use Lemma 6.4.1 to convert the sequence (f(pn)+C)P −1

n=0
to range [f(p0) + C, f(pP −1) + C] and rewrite the forward direction as

∀C ∈ Z . (∃a ∈ γ(â), b ∈ γ(b̂) . ((f(a, b) + C) mod 2k+1) < 2k =⇒

∃v ∈
[

min
a∈γ(â)
b∈γ(b̂)

(f(a, b) + C) , max
a∈γ(â)
b∈γ(b̂)

(f(a, b) + C)
]
. (v mod 2k+1) < 2k). (6.15)

The implication clearly holds, completing the proof.
While Theorem 6.4.2 forms a basis for the modular extreme-finding method, there are

two problems. First, finding global extremes of a pseudo-Boolean function is not generally
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trivial. Second, the step condition, that is, the absence of a step longer than 2k in h, must
be ensured. Otherwise, one of the inequality intervals could be “jumped over”. For non-
trivial operators, steps longer than 2k surely are present in h for some k. However, instead
of h, it is possible to use a tuple of functions (hk)M−1

k=0 where each one fulfils Equation 6.10
for a given k exactly when h does. This is definitely true if each hk is congruent with h
modulo 2k+1.

Fast best abstract transformer algorithms can now be formed based on finding extremes
of hk, provided that hk changes by at most 2k when exactly one bit of input changes its
value, which implies that a sequence p with properties required by Theorem 6.4.2 exists.
For ease of expression of the algorithms, we define a function which discards bits of a
number x below bit k (or, equivalently, performs integer division by 2k),

ζk(x) =
⌊
x

2k

⌋
. (6.16)

For conciseness, given inputs â ∈ (2B)N , b̂ ∈ (2B)N , we also define

hmin
k

def= min
a∈γ(â)
b∈γ(b̂)

hk(a, b), hmax
k

def= max
a∈γ(â)
b∈γ(b̂)

hk(a, b), (6.17)

Equation 6.10 then can be reformulated as follows: if ζk(hmin
k ) ̸= ζk(hmax

k ), both inequalities
are definitely fulfilled (as each one must be fulfilled by some element of the sequence) and
output bit k is unknown. Otherwise, only one inequality is fulfilled, the output bit k is
known and its value corresponds to ζk(hmin

k ) mod 2. This forms the basis of Algorithm 6.1,
which provides a general blueprint for fast abstract algorithms. Proper extreme-finding for
the considered operation must be added to the algorithm, denoted by (. . . ) in the algorithm
pseudocode. We will devise extreme-finding for fast abstract addition and multiplication
operations in the rest of the paper.

Algorithm 6.1: Modular extreme-finding abstract algorithm blueprint
1: function Modular_Algorithm_Blueprint(â, b̂)
2: for k ∈ {0, . . . ,M − 1} do
3: hmin

k ← (. . . ) ▷ Compute extremes of hk

4: hmax
k ← (. . . )

5: if ζk(hmin
k ) ̸= ζk(hmax

k ) then
6: ck ← X̂ ▷ Set result bit unknown
7: else
8: cm

k ← 0, cv
k ← ζk(hmin

k ) mod 2 ▷ Set value
9: end if

10: end for
11: return ĉ
12: end function
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6.5. Fast Abstract Addition

6.5 Fast Abstract Addition
To express fast abstract addition using the modular extreme-finding technique, we first
define a function expressing the unsigned value of a concrete bit-vector a with an arbitrary
number of bits A,

Φ(a) def=
A−1∑
i=0

2iai. (6.18)

Pseudo-Boolean addition is then defined simply as

h+(a, b) def= Φ(a) + Φ(b). (6.19)

To fulfil the step condition, we define

h+
k (a, b) = Φ(a0..k) + Φ(b0..k). (6.20)

This is congruent with h+ modulo 2k+1. The step condition is trivially fulfilled for every
function h+

k in (h+
k )M−1

k=0 , as changing the value of a single bit of a or b changes the result
of h+

k by at most 2k. We note that this is due to h+ having a special form where only
single-bit summands with power-of-2 coefficients are present. Finding the global extremes
is trivial as each summand only contains a single abstract bit. Recalling Subsection 6.2.1,
the extremes can be obtained as

h+,min
k ← Φ(av

0..k) + Φ(bv
0..k),

h+,max
k ← Φ(a1

0..k) + Φ(b1
0..k).

(6.21)

The best abstract transformer for addition is obtained by combining Equation 6.21 with
Algorithm 6.1. Time complexity is trivially Θ(N), proving Theorem 6.3.1. Similar rea-
soning can be used to obtain fast best abstract transformers for subtraction and general
summation, only changing the computation of hmin

k and hmax
k .

For further understanding, we will show how fast abstract addition behaves for “X0”
+ “11”:

k = 0 : “0” + “1”, 1 = ζ0(0 + 1) = ζ0(0 + 1) = 1→ r0 = ‘1’,
k = 1 : “X0” + “11”, 1 = ζ1(0 + 3) ̸= ζ1(2 + 3) = 2→ r1 = ‘X’,
k = 2 : “0X0” + “011”, 0 = ζ2(0 + 3) ̸= ζ2(2 + 3) = 1→ r2 = ‘X’,
k > 2 : ζk(h+,min

k ) = ζk(h+,max
k ) = 0→ rk = ‘0’.

(6.22)

For M = 2, the result is “XX1”. For M > 2, the result is padded by ‘0’ to the left,
preserving the unsigned value of the output. For M < 2, the addition is modular. This
fully corresponds to the behaviour of concrete binary addition.
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6.6 Fast Abstract Multiplication
Multiplication is typically implemented on microprocessors with three different input signed-
ness combinations: unsigned × unsigned, signed × unsigned, and signed × signed, with
signed variables using two’s complement encoding. It is a well-known fact that the signed-
unsigned and signed multiplication can be converted to unsigned multiplication by extend-
ing the signed multiplicand widths to product width using an arithmetic shift right. This
could pose problems when the leading significant bit is ‘X’, but it can be split beforehand
into two cases, ‘0’ and ‘1’. This allows us to only consider unsigned multiplication in this
section, signed multiplication only incurring a constant-time slowdown.

6.6.1 Obtaining a Best Abstract Transformer
Abstract multiplication could be resolved similarly to abstract addition by rewriting mul-
tiplication as an addition of a sequence of shifted summands (long multiplication) and
performing fast abstract summation. However, this does not result in a best abstract
transformer. The shortest counterexample is “11” · “X1”. Here, the unknown bit b1 is
added twice before influencing r2, once as a summand in the computation of r2 and once
as a carryover from r1:

(23) (22) (21) (20)
1 1

· b1 1
(b1) (b1) b1 1

b1 1
b1 2b1 1 + b1 1

In fast abstract summation, the summand b1 is treated as distinct for each output bit
computation, resulting in unnecessary overapproximation of multiplication.

Instead, to obtain a fast best abstract transformer for multiplication, we apply the
modular extreme-finding technique to multiplication itself, without intermediate conversion
to summation. Fulfilling the maximum 2k step condition is not as easy as previously. The
multiplication output function h∗ is defined as

h∗(a, b) def= Φ(a) · Φ(b) =
N−1∑
i=0

N−1∑
j=0

2i+jaibj. (6.23)

One could try to use congruences to remove some summands from h∗
k while keeping all

remaining summands positive. This would result in

hk(a, b) =
k∑

i=0

k−i∑
j=0

2i+jaibj. (6.24)

Changing a single bit ai would change the result by ∑k−i
j=0 2i+jbj. This sums to at most

2k+1−1 and thus does not always fulfil the maximum 2k step condition. However, the sign
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of the summand 2kaibk−i can be flipped due to congruence modulo 2k+1, after which the
change of result from a single bit flip is always in the interval [−2k, 2k − 1]. Therefore, to
fulfil the maximum 2k step condition, we define h∗

k : BN × BN → Z as

h∗
k(a, b) def=

(
−

k∑
i=0

2kaibk−i

)
+
k−1∑

i=0

k−i−1∑
j=0

2i+jaibj

 . (6.25)

For more insight into this definition, we will return to the counterexample to the previous
approach, “11” · “X1”, which resulted in unnecessary overapproximation for k = 2. Writing
h∗

2 computation as standard addition similarly to the previously shown long multiplication,
the carryover of b1 is counteracted by the summand −22b1:

(23) (22) (21) (20)
(b1) b1 1
−b1 1

0 1 + b1 1

It is apparent that ζ2(hmin
2 ) = ζk(hmax

2 ) = 0 and unnecessary overapproximation is not
incurred. Using that line of thinking, the definition of h∗

k in Equation 6.25 can be intu-
itively regarded as ensuring that the carryover of an unknown bit into the k-th column
is neutralised by a corresponding k-th column summand. Consequently, if the unknown
bit can appear only in both of them simultaneously, no unnecessary overapproximation is
incurred.

While the maximum 2k step condition is fulfilled in Equation 6.25, extreme-finding
is much more complicated than for addition, becoming heavily dependent on abstract
input bit pairs of the form (âi, b̂k−i) where 0 ≤ i ≤ k. Such pairs result in a summand
−2kaibk−i in h∗

k. When multiplication is rewritten using long multiplication as previously,
this summand is present in the k-th column. We therefore name such pairs k-th column
pairs for conciseness.

In Subsection 6.6.2, we show that if at most one k-th column pair where âi = b̂k−i = X̂
(double-unknown pair) exists, extremes of h∗

k can be found easily. In Subsection 6.6.3, we
prove that if at least two double-unknown pairs exist, rk = X̂. Taken together, this yields
a best abstract transformer algorithm for multiplication. In Subsection 6.6.4, we discuss
implementation considerations of the algorithm with emphasis on reducing computation
time. Finally, in Subsection 6.6.5, we present the final algorithm.

6.6.2 At Most One Double-Unknown k-th Column Pair
An extreme is given by values a ∈ â, b ∈ b̂ for which the value h∗

k(a, b) is minimal or
maximal (Equation 6.17). We will show that such a, b can be found successively when at
most one double-unknown k-th column pair is present.
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First, for single-unknown k-th column pairs where âi = X̂, b̂k−i ̸= X̂, we note that in
Equation 6.25, the difference between h∗

k when ai = 1 and when ai = 0 is

h∗
k(a, b | ai = 1)− h∗

k(a, b | ai = 0) = −2kbk−i +
k−i−1∑

j=0
2i+jbj. (6.26)

Since the result of the sum over j must be in the interval [0, 2k−1], the direction of the
change (negative or non-negative) is uniquely given by the value of bk−i, which is known.
It is therefore sufficient to ensure amin

i ← bk−i when minimising and amin
i ← 1− bk−i when

maximising. Similar reasoning can be applied to single-unknown k-th column pairs where
âi ̸= X̂, b̂k−i = X̂.

After assigning values to all unknown bits in single-unknown k-th column pairs, the
only still-unknown bits are the ones in the only double-unknown k-th column pair present.
In case such a pair âi = X̂, b̂j = X̂, j = k− i is present, the difference between h∗

k when ai

and bj are set to arbitrary values and when they are set to 0 is

h∗
k(a, b)− h∗

k(a, b | ai = 0, bj = 0) =

− 2kaibj + 2iai

j−1∑
z=0

2zbz

+ 2jbj

(
i−1∑
z=0

2zaz

)
.

(6.27)

When minimising, it is clearly undesirable to choose amin
i ̸= bmin

j . Considering that
the change should not be positive, amin

i = bmin
j = 1 should be chosen if and only if

2i

j−1∑
z=0

2zbz

+ 2j

(
i−1∑
z=0

2zaz

)
≤ 2k. (6.28)

When maximising, it is clearly undesirable to choose amax
i = bmax

j . That said, amax
i =

1, bmax
j = 0 should be chosen if and only if

2j

(
i−1∑
z=0

2zaz

)
≤ 2i

j−1∑
z=0

2zbz

 . (6.29)

Of course, the choice is arbitrary when both possible choices result in the same change.
After the case of the only double-unknown k-th column pair present is resolved, there are
no further unknown bits and thus, the values of h∗

k extremes can be computed as

h∗,min
k =

(
−

k∑
i=0

2kamin
i bmin

k−i

)
+
k−1∑

i=0

k−i−1∑
j=0

2i+jamin
i bmin

j

 ,
h∗,max

k =
(
−

k∑
i=0

2kamax
i bmax

k−i

)
+
k−1∑

i=0

k−i−1∑
j=0

2i+jamax
i bmax

j

 .
(6.30)
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6.6.3 Multiple Double-Unknown k-th Column Pairs
Lemma 6.6.1. Consider a sequence of integers t = (t0, t1, . . . , tT −1) that fulfils

∀n ∈ [0, T − 2] . |tn+1 − tn| ≤ 2k, t0 + 2k ≤ tT −1. (6.31)

Then,

∃n ∈ [0, T − 1] . (tn mod 2k+1) < 2k. (6.32)

Proof. Use Lemma 6.4.1 to transform the claim to equivalent

∃v ∈ [min t,max t] . (v mod 2k+1) < 2k. (6.33)

Since [t1, t1 + 2k] ⊆ [min t,max t], such claim is implied by

∃v ∈ [t0, t0 + 2k] . (v mod 2k+1) < 2k. (6.34)

As [t0, t0 + 2k] mod 2k+1 has 2k + 1 elements and there are only 2k elements that do not
fulfil (v mod 2k+1) < 2k, Equation 6.34 holds due to the pigeonhole principle.

Corollary 6.6.2. Given a sequence of integers (t0, t1, . . . , tT −1) that fulfils Lemma 6.6.1
and an arbitrary integer C ∈ Z, the lemma also holds for sequence (t0+C, t1+C, . . . , tT −1+
C).

Theorem 6.6.3. Let r̂∗,best
k be the best abstract transformer of multiplication. Let â and

b̂ be such that there are p1, p2, q1, q2 in {0, . . . , k} where

p1 ̸= p2, p1 + q2 = k, p2 + q1 = k,

âp1 = X̂, âp2 = X̂, b̂q1 = X̂, b̂q2 = X̂.
(6.35)

Then r̂best,∗
k (â, b̂) = X̂.

Proof. For an abstract bit-vector ĉ with positions of unknown bits u1, . . . , un, denote
the concrete bit-vector c ∈ γ(ĉ) for which ∀i ∈ {1, . . . , n} . cui

= si by γs1,...,sn(ĉ). Let
Φs1,...,sn(ĉ) def= Φ(γs1,...,sn(ĉ)).

Now, without loss of generality, assume â only has unknown values in positions p1 and
p2 and b̂ only has unknown positions q1, q2 and p1 < p2, q1 < q2. Then, for s1, s2, t1, t2 ∈ B,
using h(a, b) = Φ(a) · Φ(b),

h(γs1,s2(â), γt1,t2(b̂)) = (2p1s1 + 2p2s2 + Φ00(â)) · (2q1t1 + 2q2t2 + Φ00(b̂)). (6.36)

Define A def= Φ00(â) and B
def= Φ00(b̂) and let them be indexable similarly to bit-vectors,

i.e. A0..z = (A mod 2z+1), Az = ζz(A0..z). Define

hproof
k (γs1,s2(â), γt1,t2(b̂)) def=

2p1+q1s1t1 + 2p1+q2s1t2 + 2q1t1A0..p2−1 + 2p1s1B0..q2−1 +
2p2+q1s2t1 + 2p2+q2s2t2 + 2q2t2A0..p1−1 + 2p2s2B0..q1−1 + AB.

(6.37)
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As Ap1 = Ap2 = Bq1 = Bq2 = 0, hproof
k and h are congruent modulo 2k+1. Define

D(s1, s2, t1, t2) def= hproof
k (γs1,s2(â), γt1,t2(b̂)) − hproof

k (γ00(â), γ00(b̂)). (6.38)

As p1 + q2 = k and p2 + q1 = k,

D(s1, s2, t1, t2) = 2p1+q1s1t1 + 2ks1t2 + 2q1t1A0..p2−1 + 2p1s1B0..q2−1+
2ks2t1 + 2p2+q2s2t2 + 2q2t2A0..p1−1 + 2p2s2B0..q1−1.

(6.39)

Set s1, s2, t1, t2 to specific chosen values and obtain

D(1, 1, 0, 0) = D(1, 0, 0, 0) +D(0, 1, 0, 0),
D(0, 0, 1, 1) = D(0, 0, 1, 0) +D(0, 0, 0, 1),
D(1, 0, 0, 1) = 2k +D(1, 0, 0, 0) +D(0, 0, 0, 1).

(6.40)

Inspecting the various summands, note that

D(1, 0, 0, 0) ∈ [0, 2k − 1], D(0, 1, 0, 0) ∈ [0, 2k − 1],
D(0, 0, 1, 0) ∈ [0, 2k − 1], D(0, 0, 0, 1) ∈ [0, 2k − 1],

D(1, 1, 0, 0)−D(1, 0, 0, 0) ∈ [0, 2k − 1],
D(0, 0, 1, 1)−D(0, 0, 1, 0) ∈ [0, 2k − 1].

(6.41)

Recalling Equation 6.10, the best abstract transformer can be obtained as

0 ∈ r̂best
k ⇐⇒ ∃a ∈ γ(â), b ∈ γ(b̂) . (hproof

k (a, b) mod 2k+1) < 2k,

1 ∈ r̂best
k ⇐⇒ ∃a ∈ γ(â), b ∈ γ(b̂) . ((hproof

k (a, b) + 2k) mod 2k+1) < 2k.
(6.42)

Constructing a sequence of hproof
k (γs1,s2(â), γt1,t2(b̂)) that fulfils the conditions of Lemma 6.6.1

then implies that both inequalities can be fulfilled due to Corollary 6.6.2, which will com-
plete the proof. Furthermore, as D(s1, s2, t1, t2) only differs from hproof

k (γs1,s2(â), γt1,t2(b̂))
by the absence of summand AB that does not depend on the choice of s1, s2, t1, t2, it suffices
to construct a sequence of D(s1, s2, t1, t2) that fulfils Lemma 6.6.1 as well.

There is at least a 2k step between D(0, 0, 0, 0) and D(1, 0, 0, 1). They will form the
first and the last elements of the sequence, respectively. It remains to choose the elements
in their midst so that there is at most 2k step between successive elements.
Case 6.6.4. D(0, 1, 0, 0) ≥ D(0, 0, 0, 1). Considering Equations 6.40 and 6.41, a qualifying
sequence is

(D(0, 0, 0, 0), D(1, 0, 0, 0), D(1, 1, 0, 0), D(1, 0, 0, 1)). (6.43)

Case 6.6.5. D(0, 1, 0, 0) < D(0, 0, 0, 1). Using Equation 6.39, rewrite the case condition to

2p2−p1D(1, 0, 0, 0) < 2q2−q1D(0, 0, 1, 0). (6.44)
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As p1 + q2 = k, p2 + q1 = k, it also holds that q2− q1 = p2− p1. Rewrite the case condition
further to

2p2−p1D(1, 0, 0, 0) < 2p2−p1D(0, 0, 1, 0). (6.45)

Therefore, D(1, 0, 0, 0) < D(0, 0, 1, 0). Considering Equations 6.40 and 6.41, a qualifying
sequence is

(D(0, 0, 0, 0), D(0, 0, 1, 0), D(0, 0, 1, 1), D(1, 0, 0, 1)). (6.46)

This completes the proof.

6.6.4 Implementation Considerations
There are some considerations to be taken into account for an efficient implementation of
the fast multiplication algorithm.

The first question is how to detect the positions of single-unknown and double-unknown
k-th column pairs. As such pairs have the form 2kaibk−i, it is necessary to perform a bit
reversal of one of the bit-vectors before bitwise logic operations can be used for position
detection. Fortunately, it suffices to perform the reversal only once at the start of the
computation. Defining the bit reversal of the first z bits of b as λ(b, z) = (bz−1−i)z−1

i=0 , when
the machine word size W ≥ k + 1, reversal of the first k + 1 bits (i.e. the bits in b0..k) may
be performed as

λ(b, k + 1) = ((bk−i)k
i=0) = ((bW −1−i)W −1

i=W −k−1) = λ(b,W )W −k−1..W −1. (6.47)

It is thus possible to precompute λ(b,W ) and, for each k, obtain λ(b, k+1) via a right shift
through W − k − 1 bits, which can be performed in constant time. Furthermore, power-
of-two bit reversals can be performed in logarithmic time on standard architectures [155,
p. 33-35], which makes the computation of λ(b,W ) even more efficient.

The second problem is finding out whether multiple double-unknown k-th column pairs
exist, and if there is only a single one, what is its position. While that can be deter-
mined trivially in linear time, a find-first-set algorithm can also be used, which can be
implemented in logarithmic time on standard architectures [155, p. 9] and also is typically
implemented as a constant-time instruction on modern processors.

The third problem, computation of h∗
k extremes in Equation 6.30, is not as easily

mitigated. This is chiefly due to the removal of summands with coefficients above 2k due to
2k+1 congruence. While typical processors contain a single-cycle multiplication operation,
we have not found an efficient way to use it for the computation of Equation 6.25. To
understand why this is problematic, computation of h∗

k with 3-bit operands and k = 2 can
be visualised as
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(24) (23) (22) (21) (20)
a2 a1 a0

· b2 b1 b0
(−a2b0) a1b0 a0b0

���HHHa2b1 (−a1b1) a0b1

�
��H
HHa2b2 �

��H
HHa1b2 (−a0b2)

. . .

The striked-out operands are removed due to 2k+1 congruence, while the k-th column pair
summands are subtracted instead of adding them. These changes could be performed via
some modifications of traditional multiplier implementation (resulting in a custom proces-
sor instruction), but are problematic when only traditional instructions can be performed
in constant time. Instead, we propose computation of h∗

k via

h∗
k(a, b) =

k∑
i=0

ai

(
−2kbk−i + 2iΦ(b0..k−i−1)

)
. (6.48)

As each summand over i can be computed in constant time on standard architectures,
h∗

k(a, b) can be computed in linear time. Modified multiplication techniques with lesser
time complexity such as Karatsuba multiplication or Schönhage–Strassen algorithm [156]
could also be considered, but they are unlikely to improve practical computation time when
N corresponds to the word size of normal microprocessors, i.e. N ≤ 64.

6.6.5 Fast Abstract Multiplication Algorithm
Applying the previously discussed improvements directly leads to Algorithm 6.2. For con-
ciseness, in the algorithm description, bitwise operations are denoted by the corresponding
logical operation symbol, shorter operands have high zeros added implicitly, and the bits
of amin, amax, bmin, bmax above k are not used, so there is no need to mask them to zero.

Algorithm 6.2: Fast abstract multiplication algorithm
1: function Fast_Abstract_Multiplication(â, b̂)
2: av

rev ← λ(bv,W ) ▷ Compute machine-word reversals for word size W
3: bv

rev ← λ(bv,W )
4: am

rev ← λ(am,W )
5: bm

rev ← λ(bm,W )
6: for k ∈ {0, . . . ,M} do
7: sa ← am ∧ ¬bm

rev,W −k−1..W −1 ▷ Single-unknown k-th c. pairs, ‘X’ in a
8: amin ← av ∨ (sa ∧ bv

rev,W −k−1..W −1) ▷ Minimise such pairs
9: amax ← av ∨ (sa ∧ ¬bv

rev,W −k−1..W −1) ▷ Maximise such pairs
10: sb ← bm ∧ ¬am

rev,W −k−1..W −1 ▷ Single-unknown k-th c. pairs, ‘X’ in b
11: bmin ← bv ∨ (sb ∧ av

rev,W −k−1..W −1) ▷ Minimise such pairs
12: bmax ← bv ∨ (sb ∧ ¬av

rev,W −k−1..W −1) ▷ Maximise such pairs
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13: d← am ∧ bm
rev,W −k−1..W −1 ▷ Double-unknown k-th column pairs

14: if Φ(d) ̸= 0 then ▷ At least one double-unknown 2k pair
15: i← Find_First_Set(d)
16: if Φ(d) ̸= 2i then ▷ At least two double-unknown k-th col. pairs
17: ck ← X̂ ▷ Theorem 6.6.3
18: continue
19: end if
20: j ← k − i ▷ Resolve singular double-unknown k-th column pair
21: if 2iΦ(bmin

0..j−1) + 2jΦ(amin
0..i−1) ≤ 2k then ▷ Equation 6.28

22: amin
i ← 1

23: bmin
j ← 1

24: end if
25: if 2jΦ(amax

0..i−1) ≤ 2iΦ(bmax
0..j−1) then ▷ Equation 6.29

26: amax
i ← 1

27: else
28: bmax

j ← 1
29: end if
30: end if
31: h∗,min

k ← 0 ▷ Computed amin, bmin, compute minimum of h∗
k

32: h∗,max
k ← 0 ▷ Computed amax, bmax, compute maximum of h∗

k

33: for i ∈ {0, . . . , k} do ▷ Compute each row separately
34: if amin

i = 1 then
35: h∗,min

k ← h∗,min
k − (2kbmin

k−i) + (2iΦ(bmin
0..k−i−1))

36: end if
37: if amax

i = 1 then
38: h∗,max

k ← h∗,max
k − (2kbmax

k−i ) + (2iΦ(bmax
0..k−i−1))

39: end if
40: end for
41: if ζk(h∗,min

k ) ̸= ζk(h∗,max
k ) then

42: ck ← X̂ ▷ Set result bit unknown
43: else
44: cm

k ← 0, cv
k ← ζk(h∗,min

k ) mod 2 ▷ Set value
45: end if
46: end for
47: return ĉ
48: end function

Upon inspection, it is clear that the computation complexity is dominated by compu-
tation of hmin

k , hmax
k and the worst-case time complexity is Θ(N2), proving Theorem 6.3.2.

Since the loops depend on M which does not change when signed multiplication is consid-
ered (only N does), signed multiplication is expected to incur at most a factor-of-4 slow-
down when 2N fits machine word size, the possible slowdown occurring due to possible
splitting of most significant bits of multiplicands (discussed at the start of this section).
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6.7 Experimental Evaluation
We implemented the naïve universal algorithm, the fast abstract addition algorithm, and
the fast abstract multiplication algorithm in the C++ programming language, without any
parallelisation techniques used. In addition to successfully checking equivalence of naïve
and fast algorithm outputs for N ≤ 9, we measured the performance of algorithms with
random inputs1.

To ensure result trustworthiness, random inputs are uniformly distributed and gener-
ated using a C++ standard library Mersenne twister before the measurement. The com-
puted outputs are assigned to a volatile variable to prevent their removal due to compile-
time optimisation. Each measurement is taken 20 times and the corrected sample standard
deviation is visualised.

The program was compiled by GCC 9.3.0, in 64-bit mode and with maximum speed
optimisation level -O3. It was run on a virtual machine supplied by the conference where
the original paper [A.1] was published, on an x86-64 desktop system with an AMD Ryzen
1500X processor.

6.7.1 Visualisation and Interpretation
We measured the CPU time taken to compute outputs for 106 random input combinations
for all algorithms for N ≤ 8, visualising the time elapsed in Figure 6.1. As expected, the
naïve algorithm exhibits exponential dependency on N and the fast addition algorithm
seems to be always better than the naïve one. The fast multiplication algorithm dominates
the naïve one for N ≥ 6. The computation time of the naïve algorithm makes its usage for
N ≥ 16 infeasible even if more performant hardware and parallelization techniques were
used.

For the fast algorithms, we also measured and visualised the results up to N = 32
in Figure 6.2. Fast addition is extremely quick for all reasonable input sizes and fast
multiplication remains quick enough even for N = 32. Fast multiplication results do not
seem to exhibit a noticeable quadratic dependency. We consider it plausible that as N rises,
so does the chance that there are multiple double-unknown k-th column pairs for an output
bit and it is set to ‘X’ quickly, counteracting the worst-case quadratic computation time.

Finally, we fixed N = 32, changing the independent variable to the number of unknown
bits in each input, visualising the measurements in Figure 6.3. As expected, the fast
multiplication algorithm exhibits a prominent peak with the easiest instances being all-
unknown, as almost all output bits will be quickly set to ‘X’ due to multiple double-
unknown k-th column pairs. Even at the peak around N = 6, the throughput is still
above one hundred thousand computations per second, which should be enough for model
checking usage.

In summary, while the naïve algorithm is infeasible for usage even with 16-bit inputs,
the fast algorithms remain quick enough even for 32-bit inputs.

1The implementation and measurement scripts are available in an artefact at https://doi.org/
10.6084/m9.figshare.16622983.v1.
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Figure 6.1: Measured computation times for 106 random abstract input combinations.
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Figure 6.2: Measured computation time for 106 random abstract input combinations, fast
algorithms only.
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Figure 6.3: Measured computation times for 106 random abstract input combinations with
fixed N = 32, while the number of unknown bits in each input varies.
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6.8 Further Notes
In this chapter, a new modular extreme-finding technique was introduced for the construc-
tion of fast algorithms which compute the best permissible three-valued abstract bit-vector
result of concrete operations with three-valued abstract bit-vector inputs when the output
is not restricted otherwise. Also presented was a linear-time algorithm for abstract addition
and a worst-case quadratic algorithm for abstract multiplication, with the experimental
evaluation showing that their speed is sufficient even for 32-bit operations, for which naïve
algorithms are infeasibly slow. As such, they may be used to improve the speed of model
checkers which use three-valued abstraction.

In machine-check, addition, subtraction, and multiplication are currently resolved ac-
cording to the modular blueprint presented in Algorithm 6.1. While the best algorithm for
multiplication could be used in the future, the use of the abstraction refinement framework
from Chapter 5 makes it a bit less important to immediately compute the best results.
The insights from Section 6.6 into which bits may not have the best result computed using
Algorithm 6.1 are important, as they offer us an option to switch to Algorithm 6.2 in the
future for the cases where not having the best result may be problematic. In Chapter 7,
the interplay between the introduced techniques will be discussed in more detail.
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Chapter 7
Created Formal Verification Tool

machine-check

My publicly available, free, and open-source verification tool machine-check1 is based on
the techniques described in Chapters 4, 5, and 6, all of them working in concert to achieve
state-of-the-art verification of machine-code systems.

In this chapter, I will first discuss combining the previously introduced techniques to be
used in machine-check without considering the implementation specifics too much, giving
a high-level overview of the interactions between the formalisms and the implementation
before discussing how the translation is accomplished. I will then discuss the internal
structure of machine-check, which uses the Rust language both for its implementation
and the simulable descriptions, noting the added complications brought by the choice of
the Rust language. Finally, I will present the evaluation of the current version of machine-
check on machine-code programs written for the AVR ATmega328P microcontroller, using
a simulable description of the microcontroller I wrote.

7.1 Input-based Three-valued Abstraction Refinement
Using Abstraction Analogues

To combine the techniques from Chapters 4, 5 and 6, we need to begin with the fun-
damental building block, which is the input-based Three-valued Abstraction Refinement
framework introduced in Chapter 5 that provides the verification results. The soundness,
monotonicity, and completeness characteristics can then be either formally proven or only
considered informally, guiding the implementation of the tool, with the possibility of bugs
lessened by informal testing. Since I was concerned with creating a useful and easily ex-

1The official website of the tool is https://machine-check.org. The current release at the time
of writing this thesis, which will be discussed and evaluated in this chapter, is available at https://
crates.io/crates/machine-check/0.4.0.
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tensible verification tool, not one that intensely adheres to formalisms, I will only discuss
soundness, monotonicity, and completeness with some degree of formality in this section.

Recalling the definition of generating automata from Section 5.2, a generating automa-
ton (GA) is a tuple G = (S, s0, I, q, f, L) where

◦ S is the set of automaton states,

◦ s0 ∈ S is the initial state,

◦ I is the set of all possible step inputs,

◦ q : S → 2I \ {∅} is the input qualification function,

◦ f : S × I → S is the step function, mapping the combination of the current state
and step input to the next state,

◦ L : S × A→ {0, 1,⊥} is a labelling function.

To instantiate the framework as per Algorithm 5.1, it is first needed to provide the model-
checking algorithm based on the specification formalism. In machine-check, I chose
Computation Tree Logic (CTL) and implemented the model-checking algorithms as dis-
cussed in Section 5.4, using a previously introduced algorithm that combines two passes
of the classic explicit-state CTL checking algorithm to obtain the three-valued result [130,
p. 173-174]. The property is first transformed to a positive normal form with no negations,
the negations of atomic properties changed to complementary atomic properties, and the
properties are then model-checked using a pessimistic Kripke structure, where the atomic
properties with valuation ⊥ are coerced to 0, and an optimistic Kripke structure, where
they are coerced to 1. If the results are the same, that gives the three-valued result. If
they differ, the three-valued result is ⊥.

In addition to the model-checking algorithm, it is necessary to consider:

◦ The concrete generating automaton (CGA) G = (S, s0, I, {(s, I) | s ∈ S}, f, L),
which represents the original (concrete) system under verification.

◦ The initial abstract generating automaton (AGA) Ĝ0 = (Ŝ, ŝ0, Î , q̂
0, f̂ 0, L̂).

◦ The algorithm for the refinement of the abstract generating automaton that, in each
refinement loop iteration with index n ∈ N0, manipulates q̂n and f̂n to produce the
refined AGA Ĝn+1 = (Ŝ, ŝ0, Î , q̂

n+1, f̂n+1, L̂).

Considering the simulable descriptions from Chapter 4, the CGA in machine-check
is directly given by the system comprised of the described finite-state machine (FSM) and
other system instantiation data. S contains the FSM states, and I contains the FSM
inputs. Treating s0 as a dummy start state for simplicity and also considering an arbitrary
system instantiation object z, I define f as

f(s, i) def=

init(z, i) s = s0,

next(z, s, i) s ̸= s0.
(7.1)
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The reachable state space is determined by s0 and f . As the initialisation and step
behaviour of digital systems tends to be very different, I chose to provide two functions
init and next for the simulable description FSMs, as shown in Figure 4.3. In addition
to the input and, in the case of the next function, the current state, the functions take a
system instantiation object z so that the behaviour can change when e.g. different machine
code is loaded. This does not play a formal role, as z is constant during the verification.

It remains to define the labellings. While any function L : S × A → {0, 1,⊥} can be
used, it is sensible to allow questions about state variables based on relational operators
(equality and signed or unsigned comparisons). The choice of available labellings can
guide the specification writers, preventing them from writing specifications likely to result
in exponential explosion. In the current version of machine-check, there must be a
constant on the right side of the operator, preventing comparing e.g. the equality of two
fields, which tends to result in severe exponential explosion when only the three-valued
bit-vector domain is used. In a future version, this limitation could be dropped, allowing
for richer specifications.

7.1.1 Abstraction Soundness
Let us now consider soundness in the context of a single refinement with the abstract
generating automaton Ĝ = (Ŝ, ŝ0, Î , q̂, f̂ , L̂). In machine-check, the currently supported
types of state and input variables are bit-vectors and bit-vector arrays. Formally, the
variables can be flattened to a single bit-vector. Recalling Example 5.2.4, naming the
width of the state bit-vector w and the width of the input bit-vector as y, the sets S and
I with the corresponding concretization functions γ, ζ are defined as

γbit(â) = {v ∈ B | (v = 0⇒ a ̸= ‘1’) ∧ (v = 1⇒ a ̸= ‘0’)},
Ŝ = {‘0’, ‘1’, ‘X’}w, γ(ŝ) = {s ∈ S | ∀k ∈ [0, w − 1] . sk ∈ γbit(ŝk)},
Î = {‘0’, ‘1’, ‘X’}y, ζ (̂i) = {i ∈ I . ∀k ∈ [0, y − 1] . ik ∈ γbit(̂ik)}.

(7.2)

The step function is the crucial part where the framework interacts with the description
and translated analogues. The translated analogue of f becomes f̂basic: recalling Example
5.2.9, for soundness, the translation must ensure that

∀(ŝ, î) ∈ Ŝ × Î . ∀(s, i) ∈ γ(ŝ)× ζ (̂i) . f(s, i) ∈ γ(f̂basic(ŝ, î)). (7.3)

How this is managed will be shown informally in Section 7.2. Examples 5.2.4 and 5.2.9
discuss the way soundness is achieved for f̂ itself. As for the labelling function L̂, the
implementation also must ensure that it fulfils

∀ŝ ∈ Ŝ . ∀s ∈ γ(ŝ) . ∀a ∈ A . (L̂(ŝ, a) ̸= ⊥ ⇒ L̂(ŝ, a) = L(s, a)). (7.4)

Since the current implementation only supports labellings induced by equality and inequal-
ity comparisons of three-valued bit-vector fields with constants, this is easy to achieve by
taking the minimum and maximum value of the field and determining the three-valued
result of the comparison.
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7.1.2 The Refinement Algorithm
While the refinement algorithm has no impact on soundness, it is crucial for the reduction
of state space explosion. As such, we want to choose intelligently, deducing how the AGA
should be changed so that we strike a balance between the state space size and refinement
speed. In other words, we need a good heuristic.

An unknown result of three-valued model-checking will be caused by some culprit, a
path that ends with an unknown labelling that prevents the model-checking result from
being non-⊥. We want to refine p̂n

q̂ and p̂n
f̂

to p̂n+1
q̂ and p̂n+1

f̂
so that the culprit ultimately

disappears when the offending state is replaced by states where the labelling is known.
Marking. For practical systems, we can purely structurally deduce that many of the

inputs in p̂n
q̂ and decayed parts of states in p̂n

f̂
cannot cause the culprit labelling to be

unknown, because they do not act as inputs of any operations that play a role in the part
of the state responsible for the labelling result. As such, we can use a fairly simple marking
algorithm for the refinement. After finding the culprit with path (ŝ0, ŝ1, . . . , ŝc):

1. Mark the variables of the last state of the culprit ŝc that can have an effect on the
unknown labelling.

2. Set k equal to c.

3. If k is zero or ŝk is fully unmarked, stop.

4. Mark the bits of step precision p̂n
f̂
(f̂(ŝk−1)) that could have affected the unknown

labelling.

5. Mark through f̂ backwards, starting with marked parts of ŝk, marking the inputs of
operations in f̂ that could have affected marked operation outputs, until obtaining
the marking of ŝk−1 and the marking of input precision p̂n

q̂ (ŝk−1).

6. Decrement k and go to Step 3.

After stopping, we will have the candidates for refinement of p̂n
f̂

and p̂n
q̂ marked and can

choose to set some of the candidate bits in candidate states.

Example 7.1.1. Let us consider an example system that reads a Boolean value v from
the input during initialisation and later uses it after an initially-zeroed counter t counts to
3, disregarding the inputs after initialisation:

init_ex(z, i) = (0, i),
next_ex(z, (t, v), i) = (min(t+ 1, 3), v).

(7.5)

We use three-valued abstraction for v and want to verify that it is possible to reach a state
where t is 3 and v is 1, i.e. EF[t = 3 ∧ v = 1]. Using the input splitting strategy, we
first construct the reachable state space as in Figure 7.1a). Model-checking produces the
result ⊥. If, instead of ŝ4, we reached another state ŝ where L̂(ŝ, v = 1) ̸= ⊥, the property
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Figure 7.1: An example of a lasso-shaped state space before refinement and the culprit,
which consists of a path ending with a state with unknown labelling that forces the model-
checking result to be unknown.

could have been determined to hold. As such, we want to make sure that the culprit shown
in Figure 7.1b, the path (ŝ0, ŝ1, ŝ2, ŝ3, ŝ4) with the labelling L̂(ŝ4, v = 1) = ⊥, is no longer
present in the state space after refinement. As for the labelling, L̂(ŝ4, v = 1) only depends
on v̂. Therefore, starting the marking loop:

1. We mark v̂ in ŝ4.

2. Only input splitting is used, so we just mark backwards through ˆstep_ex, where the
marked v̂ only depends on v̂ in ŝ3. Therefore, we end up with marked v̂ in ŝ3.

3. We mark backwards two times in the same fashion, marking v̂ in ŝ2 and then in ŝ1.

4. We now have v̂ marked in ŝ1. Since ŝ1 was constructed using the ˆinit_ex function,
we mark backwards through ˆinit_ex, marking the bit in p̂0

q̂(ŝ0) that caused î0 = ⊥.

5. We are done with marking. There is only one marked bit of p̂0
f̂

or p̂0
q̂, the one in p̂0

q̂(ŝ0),
so we choose it for refinement.

After the refinement, it will be possible to verify that EF[t = 3 ∧ v = 1] holds using the
newly generated Partial Kripke structure Γ(Ĝ1).

The marking algorithm can be further improved not to deduce only structurally, but to
also consider the abstract values of the inputs of the abstract operations in f̂ . Notably, if the
abstract operations do not spuriously generate abstract values with multiple concretizations
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when all inputs only had a single one, it is unnecessary to mark variables with a single-
concretization abstract value, as no refinement of the variables they are dependent on will
refine the single-concretization abstract value further.

Choosing the refinement. After the candidates are found by the marking algorithm,
it is necessary to choose which bits in which state to refine. In the current version of
machine-check, a simple heuristic is used, implemented after I tried out machine-code
verification with trivial refinement choices and noticed a problematic pattern that precluded
feasible verification due to not refining the Program Counter (PC) state variable first.

For machine-code systems, it is typically desirable to refine the Program Counter be-
fore any other variables. However, the concept of the Program Counter is unknown to
machine-check, as it is simply just another field in the state structure. I was successful
in achieving the behaviour generally by adding an importance counter to variable mark-
ings. When marking an indexing operation with a not-completely-known index, the index
is marked with an incremented importance. The candidate for refinement with the highest
importance is selected for refinement. In case there are still multiple candidate bits, the
most significant bit of an arbitrarily but deterministically selected field will be refined.
As the Program Counter is used to index the program memory in order to retrieve the
instruction to be executed, this simple improvement is enough for reasonable refinement
choices in machine-code programs, as will be shown in Section 7.4. Of course, further
improvements may be added in the future.

Ensuring monotonicity. Recalling Examples 5.2.14 and 5.2.16, to ensure monotonic-
ity in machine-check, a single bit of the current p̂q̂ or p̂f̂ is changed after marking and
choosing the refinement, and the whole process commences until R̂ in Γ(Ĝ), i.e. the state
space graph, changes. It is also required L̂ and f̂ basic fulfil

∀(ŝ, ŝ′, a) ∈ Ŝ × Ŝ × A .

((γ(ŝ′) ⊆ γ(ŝ) ∧ L̂(ŝ, a) ̸= ⊥)⇒ L̂(ŝ, a) = L(ŝ′, a)),
(7.6)

∀(ŝ, ŝ′, î, î′) ∈ Ŝ × Ŝ × Î × Î .
((γ(ŝ′)× ζ (̂i′) ⊆ γ(ŝ)× ζ (̂i))⇒ γ(f̂basic(ŝ′, î′)) ⊆ γ(f̂basic(ŝ, î)).

(7.7)

Ensuring completeness. Recalling Example 5.2.22, to achieve completeness, L̂ and
f̂basic must fulfil

∀(s, ŝ) ∈ S × Ŝ . (γ(ŝ) = {s} ⇒ L̂(ŝ) = L(s)), (7.8)
∀(ŝ, î, s, i)∈ Ŝ× Î×S×I.((γ(ŝ), ζ (̂i))=({s}, {i})⇒ γ(f̂(ŝ, î))={f(s, i)}). (7.9)

The requirements are easy enough to fulfil for L̂ with the chosen atomic properties: sim-
ply provide the best comparison possible. I will discuss f̂basic in the context of translation
to the abstract analogues.
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7.2 Translation to Abstract and Refinement Analogues
I will now show how to perform translation to abstraction and refinement analogues by
rewriting the code of the simulable description. The refinement analogue has no distinct
formal requirements as long as it chooses something to refine. As for the abstraction
analogue, from the previous section, there are the following requirements for f̂basic:

∀(ŝ, î) ∈ Ŝ × Î . ∀(s, i) ∈ γ(ŝ)× ζ (̂i) . f(s, i) ∈ γ(f̂basic(ŝ, î)), (7.10a)
∀(ŝ, ŝ′, î, î′) ∈ Ŝ × Ŝ × Î × Î .

((γ(ŝ′)× ζ (̂i′) ⊆ γ(ŝ)× ζ (̂i))⇒ γ(f̂basic(ŝ′, î′)) ⊆ γ(f̂basic(ŝ, î)),
(7.10b)

∀(ŝ, î, s, i)∈ Ŝ× Î×S×I.((γ(ŝ), ζ (̂i))=({s}, {i})⇒ γ(f̂basic(ŝ, î))={f(s, i)}). (7.10c)

The requirements are very natural: the result of the abstract analogue must cover every
result of the original step function to achieve soundness, it must be monotone with respect
to coverage to achieve monotonicity, and it must preserve a single concretization to achieve
completeness.

With an appeal to intuition2 supported by classical static program analysis [157, 158],
due to the non-relational nature of the three-valued bit-vector abstraction, f̂basic can be
implemented by manipulating variables in an analogous manner to f provided each basic
operation fulfils its version of Equation 7.10. Using three-valued bit-wise operations, en-
suring this is not problematic for bitwise operations. For the fast arithmetic operations,
the notions from Chapter 6 can be used. Based on this treatment, I will now discuss how
the translations are performed.

7.2.1 Functions without Control Flow
Let us first consider the function fn1 in Figure 7.2, which simply performs a logical AND of
its two inputs and returns the output. For its abstract analogue fn1_abstr, the variables
are translated to their abstract analogues, replacing Boolean bit-vectors by three-valued
bit-vectors, and abstract operations are used instead of standard ones.

Example 7.2.1. The abstract analogue fn1_abstr, upon being called with arguments
â = “XXXXXXXX” and b̂ = “00001111”, produces “0000XXXX”.

The refinement analogue, named fn1_refin in Figure 7.2, performs backwards mark-
ing, using abstract variable values for added deductive capability. The refinement analogues
of the init and next functions are called in Step 5 of the refinement algorithm in Subsec-
tion 7.1.2. To ensure that functions can call each other within the refinement analogues,
each function has a refinement analogue, similarly to the abstract analogues.

Similarly to fn1_abstr, fn1_refin has two inputs â and b̂, which are used to allow
marking based on abstract variable values. The third input is ĉmark, which contains the

2A more formal treatment could be based on abstract interpretation in the context of static program
analysis [157, p. 211-282].
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function fn1(a, b)
c← a&b ▷ Compute the logical AND
return c ▷ Return the result

end function

function fn1_abstr(â, b̂)
ĉ← â&̂b̂ ▷ Compute the logical AND in abstract domain
return ĉ ▷ Return the result

end function

function fn1_refin(â, b̂, ĉmark)
ĉ← â&̂b̂ ▷ Compute the abstract variables

▷ (Note ĉ is unused in this example as no operation uses ĉ as an argument.)
âmark,0 ← Unmarked ▷ Have all markings except ĉmark unmarked
b̂mark,0 ← Unmarked
(âmark,1, b̂mark,1)← MarkLogicalAnd(â, b̂, ĉmark) ▷ Compute operation markings
âmark,2 ← JoinMarkings(âmark,0, âmark,1) ▷ Join them with previous markings
b̂mark,2 ← JoinMarkings(b̂mark,0, b̂mark,1)
return (âmark,2, b̂mark,2) ▷ Return marks of the original inputs

end function
Figure 7.2: A function without control flow and its abstract and refinement analogues.

marking of the result of fn1_abstr. The task is to compute the markings of the inputs
â and b̂ of fn1_abstr.

As we want to use the abstract variables for the computation of markings, we compute
the values of the non-input abstract variables first (here, ĉ). We then consider all markings
except for the result marking to be unmarked at first and start marking in the backward
order of operations. Since variables can be used multiple times as operation inputs, it is
necessary to join all the markings introduced by operations. At the end, the markings of
the abstract inputs are returned.

Example 7.2.2. Continuing from Example 7.2.1, suppose that we marked all bits of the
output of fn1_abstr, which I will write as cmark = 111111112, and we want to propagate
the marking to its inputs.

Deducing mentally from fn1_abstr with arguments â = “XXXXXXXX” and b̂ =
“00001111”, we see that b is fully known, so it does not need to be considered further. We
put bmark = 000000002. While â is fully unknown, considering the logic AND operation,
the upper four bits of â could not have caused the problem as the zeroed upper four bits
of b̂ ensure they have no impact. Therefore, we put amark = 000011112. That is also what
fn1_refin will return, provided the functions MarkLogicalAnd and JoinMarkings
are implemented reasonably.
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function fn2(a, b)
if a ≤ b then ▷ Compute the minimum

c← a
else

c← b
end if
return c ▷ Return the minimum

end function

function fn2_abstr(â, b̂)
ŵ ← ˆ̂a ≤ b̂ ▷ Three-valued condition
if CanBeTrue(ŵ) then

ĉ1 ← Taken(â) ▷ the then branch can be taken
else

ĉ1 ← NotTaken ▷ the then branch cannnot be taken
end if
if CanBeFalse(ŵ) then

ĉ2 ← Taken(b̂) ▷ the else branch can be taken
else

ĉ2 ← NotTaken ▷ the else branch cannot be taken
end if
ĉ← ϕ(ĉ1, ĉ2) ▷ Use the ϕ function
return ĉ ▷ Return the result

end function
Figure 7.3: A function with branching and its abstract analogue.

7.2.2 Functions with Conditional Branches
Control flow is a notable complication to translation to the abstract analogue: the under-
lying description language only supports concrete control flow (e.g. exactly one branch is
taken in conditional branch statements), not abstract control flow (where both branches
can be taken). Therefore, the constructs must be rewritten. As I will only consider con-
ditional branches, we can cleanly resolve this with further inspiration from static program
analysis [159, 157, 158].

Let us consider the function fn2 in Figure 7.3, where the value of c depends on the
branch taken. Since the value of â ≤ b̂ is a Boolean, its most reasonable abstraction is a
three-valued Boolean (functionally equivalent to a single-bit three-valued bit-vector). Of
course, our description language cannot branch based on that, so we duplicate the branches:
one of them will be taken depending on if â ≤ b̂ can be true, the other depending on if it
can be false. To ensure that ĉ has the correct value afterwards, we will combine the values
assigned in the duplicate branches, combining them using a phi function [159]. To avoid
the need for a special abstract domain value signifying that the branch was not taken, we
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can wrap the value in an enumeration that will either be Taken (with the given value) or
NotTaken (with no value).

While the construction of the abstract analogue is heavily complicated by control flow,
the refinement analogue is already based on the abstract analogue and it is therefore almost
unaffected. It is, however, necessary to mark the condition variable if the branch taken
could have affected some later variable that is marked.

Example 7.2.3. Let us consider that fn2_abstr is called with arguments â= “X0000000”
and b̂ = “00001111”. The condition ŵ is ‘X’ and therefore, ĉ1 = Taken(“X0000000”) and
ĉ2 = Taken(“00001111”). As both are taken, they will be combined by the ϕ function to
“X0001111”. In this instance, the marking will be propagated back to â, but if ĉ1 was in-
stead set e.g. to a constant, it would not be. As such, it is necessary to ensure the marking
is propagated to â through ŵ if ĉ is marked.

7.3 Implementation Specifics
I chose to implement machine-check in the compiled programming language Rust and
represent the descriptions in Rust as well, motivated by many factors3 including

◦ its meta-programming support,
◦ the similarity to the ubiquitously used C language in simpler constructs but simpler

syntax without many pitfalls,
◦ its applicability to embedded programming making it worthwhile for processor de-

scription writers to learn,
◦ the availability of fast standard containers and well-supported libraries for e.g. Rust

abstract syntax tree parsing.

The choice to use the Rust language heavily improved the speed of development compared
to my previous model checker written in the C++ language [A.4]. Furthermore, the ver-
ification analogues are compiled, allowing the use of compiler optimisations for quicker
verification. For the main focus, which is machine-code verification, the compilation is
not problematic as the processor description is compiled once and the machine code is
usually provided as a command-line argument to the resulting executable, as discussed in
Chapter 4.

To solve the problems of library and binary distribution in languages such as C, the
Rust language features a built-in package system. A package contains at most one library
crate and an arbitrary number of binary crates and can be published in a public package
repository, identified by its name. The default package repository for Rust is crates.io,
where the crates comprising machine-check are published.

3More details on Rust can be found e.g. in the Rust language book or the Rust reference, both available
online from https://www.rust-lang.org/learn.

104

crates.io
https://www.rust-lang.org/learn


7.3. Implementation Specifics

The package organisation has allowed me to expose the types and functions available to
the description writer in the machine−check package (which only contains a library crate
since it has to be combined with a system description and construction), while the imple-
mentation details are hidden in other packages. The interface is as streamlined as possible,
consisting of custom data types, macros machine_description and bitmask_switch, the
run function used to yield the constructed system to machine-check, and other functions
to support the construction of systems based on command-line arguments. A Graphical
User Interface can also be used, implemented in the package machine−check−gui.

The internal implementation of verification in machine-check is split between three
basic concepts, organised in three Rust packages:

◦ State space generation and model checking (machine−check−exec). Imple-
ments an instance of input-based Three-valued Abstraction Refinement framework
described in Chapter 5, with abstract states stored explicitly, i.e. without use of
Binary Decision Diagrams or similar structures.

◦ Abstraction and refinement domains (mck4). Implements the abstraction and
refinement analogues of bit-vectors and bit-vector arrays. Fast bit-vector arithmetic
described in Chapter 6 is implemented here.

◦ Translation to verification analogues (machine−check−machine). Implements
the translation, described in Chapter 4 and Section 7.2, in the machine_description
macro.

The lines of code grouped by the concepts can be seen in Figure 7.4. Disregarding the
Graphical User Interface code that has no impact on verification, it can be seen that the
translation is the most demanding, followed by the implementation of the abstraction and
refinement domains. The implementation of state space generation and model checking is
third by far. Common third-party Rust libraries with permissive licences are used when
possible, such as for abstract trees of Rust code (the syn crate) or command-line argument
parsing (the clap crate), so that the least amount of custom code is necessary, increasing
speed of development and reducing support baggage.

7.3.1 Resolution of Introduced Complications
While the Rust language constructs are fairly regular compared to C, the description code in
the machine_description macro still must be coerced to a Single Static Assignment form
with simple constructs before performing the translation to abstraction and refinement
analogues, which is complicated by some issues. There are also some parts of the code
where the non-trivial algorithms and structures must be used to achieve good verification
performance.

4The package name mck was used instead of the more conventional name machine−check−types
as it appears ubiquitously in translated system descriptions, and a short name improves their readability
and reduces their length drastically.
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7216; 35%

5643; 27%

1677; 8%

4453; 21%

1837; 9%

Translation to abstraction and refinement analogues

Abstraction and refinement domains

State space generation and model checking

Graphical user interface

Support code

Figure 7.4: Categories of lines of Rust code in machine-check version 0.4.0. There are
20826 lines of code in total. Blank and comment lines are not counted.

Panic. In Rust, the concept of panic forms a deviation from function behaviour fol-
lowing their signature. Panic can occur everywhere and results in program termination
by default. Panics are highly useful in practice, allowing immediate termination due to
an unexpected situation or a detected bug, and they are useful for processor descriptions
as well: for example, calling an illegal instruction can result in a panic. Furthermore,
processor instructions and peripherals that are not used can be left unimplemented in the
description, raising a panic instead. In machine-check, I decided to support panics by
always checking an inherent property of the system AGϕ, where ϕ means no panic is issued
in the given state. That way, verification of illegally-formed systems (e.g. machine-code
systems with illegal machine-code instructions) always produces a special inherent viola-
tion result. To implement panic checking, I changed the return value of every function
before translation to include the information about whether panic was raised and rewrote
function calls to propagate the information.
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Inside macro expansion. As the Rust macro model guarantees that macros are
expanded outside-in and there is currently no way to arbitrarily expand the macros inside,
the expansion of macros inside machine_description must be done manually. This means
that only the bitmask_switch macro is supported, together with some simple standard
Rust macros invoking panics (panic, unimplemented, todo). In conjunction with the macro
expansion, use declarations are resolved, so e.g.

1 use ::machine_check::Bitvector;
2 fn example_3(a: Bitvector<8>) {}

turns into
1 use ::machine_check::Bitvector;
2 fn example_3(a: ::machine_check::Bitvector<8>>) {}

After macro expansion and use resolution, language constructs are normalised, variables
are uniquely named (eliminating the need for scopes) and converted into the Single Static
Assignment (SSA) form which is easy to work with. As Rust variable types do not have to
be explicitly stated, being inferred otherwise, basic type inference is done before finishing.
Panic conversion is handled throughout.

The chosen strategy of meta-programming with macros is remarkably drop-in: standard
Rust code can be written with little regard to formal verification. Incorrect Rust code will
produce an error, as will code that cannot be translated, with a more-or-less helpful code
span and reason. Only a simple imperative subset of Rust code (described in Section 4.3)
is currently supported, but more features can be supported in the future for simpler and
more elegant descriptions.

Bit-vector arrays. While implementing the operations for three-valued bit-vectors
and bit-vector marking is fairly simple, a problem that can slow down the verification
drastically arises when indexing arrays. In case the index variable is partially or even fully
unknown, a large amount of elements must be considered during the read operations (which
must join all of them to obtain the result) and the write operations (which must, for all
of the elements, join the previous value and the written value, as it is unknown whether
the specific element will be actually written to). As elements with the same values can be
considered together, I implemented the arrays by only storing the leftmost elements with
the same value in an indexed map and operating on ranges of the same elements, avoiding
many unnecessary computations in practice.

Computation of monotone precision functions. As discussed in Examples 5.2.4
and 5.2.14, the monotone versions of the precision functions have been introduced to achieve
monotonicity. Problematically, since their result must be computed during the construc-
tion of the abstract state space for every abstract state, and their trivial implementation
requires taking every abstract state into account. The resolution to this was discussed
in Section 5.4: a transitive reduction graph is used for states with non-default precisions,
allowing a significant improvement over the trivial implementation. While this does not
resolve the problem completely, in most scenarios I experimented with, it makes it possible
to use fairly fine precision adjustments and preserve monotonicity without sacrificing too
much computation speed and memory.
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7.4 Verification of AVR Programs
To show the feasibility of using machine-check for verification of machine-code programs
on actual processors, I wrote a machine-check description of the 8-bit microcontroller
AVR ATmega328P, and compiled it to create the tool machine-check-avr. I evaluated
the verification capability using simple programs, experimentally verifying some of their
interesting properties5. I used 16 programs in total. Out of these, 11 were introduced in
my diploma thesis [A.4]: 6 were single-instruction programs where the inherent property
should be immediately violated and 5 were more interesting toy programs. In addition, I
introduced a new Voltage-Controlled Oscillator calibration program, a simplified version
of a real-world program with 4 variations, and a factorial-computation program, the verifi-
cation times of both of which approach the limits of what I consider acceptable for formal
verification during development (verification under a minute for each property). Notably,
I was able to find a bug in the calibration program, determining it was also present in the
original real-world version.

7.4.1 Description Details
The system description of ATmega328P consists of approximately 3000 lines, out of which
approximately 2000 are lines of Rust code, the rest are comments and blank lines. The
description could be made more compact in the future by increasing the number of con-
structs that can be translated. That said, the AVR instruction set itself contains around
a hundred instructions [21], the exact number depending on whether instructions sharing
operation codes are counted multiple times, and whether variants of the same instruction
with different behaviour are counted separately. The description is limited: enabling inter-
rupts is not supported, and only the General-Purpose I/O (GPIO) peripheral is supported.
Using an unimplemented feature or an illegal operation (such as the execution of an illegal
instruction) results in a panic.

A distinct complication to describing real-world processors is the presence of memory
addresses that have special behaviour when read or written, usually as parts of memory-
mapped peripherals. For example, in ATmega328P, the GPIO peripheral address PINB is
usually used for reading the state of the pins on the microcontroller port B, but writing to
it toggles the output values of the pins where the bit value 1 is written. This behaviour
can be described easily using machine-check descriptions.

The description was written without considerations for formal verification with one
exception: applying the xor instruction on the same register with itself is a common way
to set it to zero, but is problematic for verification using only three-valued bit-vector
abstraction, so I added a kludge that immediately sets the register to zero in this case.

The length of the system description in the macro machine_description is not theoret-
ically problematic for the Rust compiler, but can pose usability concerns, especially for the

5The programs, the evaluation script containing the properties, and the reference measurements are
available in an artefact located at https://doi.org/10.5281/zenodo.15109092.
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development of the processor description themselves. The full compilation of machine-
check-avr takes over 1 minute on the used personal computer, slowing the rapid devel-
opment process. Furthermore, in the version 0.3.2029 of the rust-analyzer extension of
Visual Studio Code, which I use for development, produces an error due to too many
tokens generated by the macro6. This means that a manual compilation was necessary
after modifying the description instead of background compilation as the code is writ-
ten, which reduced the ease of development. This problem disappeared after updating
to version 0.3.2319 of rust-analyzer, but shows the potential issues with more compli-
cated and better-described architectures. These issues could be mitigated by extending
the expressiveness of the supported Rust subset (leading to more compact descriptions)
and improving the performance of the translation and refinement analogues.

7.4.2 Evaluation Setup
The evaluation of machine-check-avr was performed on a personal computer with the
Ryzen 5600 processor in a Linux virtual machine with 8 GB of 3200 MT/s RAM available.
The programs were compiled/assembled using Microchip Studio 7.0.132. The tool was
built in release configuration using Rust 1.83.0. Building from a clean slate, the machine-
check-avr executable was built in 2 minutes and 12 seconds in the release mode. The built
executable can verify properties of ATmega328P machine-code programs. For evaluation,
the name of the machine-code Intel HEX file and the property to be verified are supplied on
the command line, with the default strategy of input splitting with no decay. The inherent
property was verified separately from others. When verifying the other properties, it was
assumed that the inherent property holds.

7.4.3 Inherent-Violation Programs
From my diploma thesis, I took 6 simple single-instruction programs that implement some
behaviours that should result in machine-check-avr determining that the inherent prop-
erty does not hold:

◦ Getting a value from a location that is not described.

◦ Setting a value from a location that is not described.

◦ Processing an instruction that is not described.

◦ Jumping outside the loaded program instructions.

◦ Setting a value to a bit restricted for writing. AVR architecture typically has unused
bits of registers in the memory map restricted in a way that a logic 1 should not be
written to it. This restriction is guaranteed in the processor description, raising an
error when this occurs.

6An issue with the same error is described in https://github.com/rust-lang/rust-analyzer/
issues/10855.
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Table 7.1: Measurements of machine-code verification of inherent-violation programs using
machine-check-avr. For the states and transitions, the first number shows the total
generated number, while the second number shows the number in the final state space.

Program name Prop. name Result Refin. States Transitions CPU time [s] Mem. [MB]

Get from undescribed Inherent ✗ 0 4 / 3 4 / 4 <0.01 3.46

Set to undescribed Inherent ✗ 0 3 / 2 3 / 3 <0.01 3.46

Undescribed instruction Inherent ✗ 0 3 / 2 3 / 3 <0.01 3.58

Jump outside Inherent ✗ 0 16386 / 16385 16386 / 16386 0.04 36.33

Set to restricted Inherent ✗ 0 5 / 4 5 / 5 <0.01 3.46

Set global interrupt flag Inherent ✗ 0 4 / 3 4 / 4 <0.01 3.58

◦ Enabling the global interrupt flag, as the processor behaviour while interrupts are
enabled is currently not described.

The results of measurements are visualised in Table 7.1. As expected, all of the pro-
grams have been shown not to uphold the inherent property. The only program deserving
its own mention is the jump outside the loaded program instructions: while the jump out-
side the loaded program instructions immediately results in generation of a state in which
it is asserted that the panic occurred, the current version of machine-check does not im-
mediately short-circuit the verification of the inherent-violation property, constructing the
whole space as the Program Counter still changes. The number of states and transitions
follows the 32 kB size of the ATmega328P instruction memory: as the Program Counter
indexes 16-bit instructions, it is 14 bits wide, with 214 = 16384.
Note 7.4.1. While interrupts are not currently supported in machine-check-avr, in one
of the previous versions, an inherent panic was not asserted upon enabling interrupts by
setting the Global Interrupt Flag, resulting in the verification of the inherent property
in the corresponding program to return that the property holds. This illustrates how an
incorrectly written processor description can result in verification results not corresponding
to the underlying device, even if the verification tool is sound. This is a great motivation
towards official formal descriptions of the processor behaviour (which are unfortunately
currently not available for the AVR architecture).
Note 7.4.2. In my diploma thesis, I additionally had a program that would set a register to
an initially undefined memory value. This resulted in a violation in the deadline checker
from the diploma thesis, but I opted to treat the initial memory values as inputs in the new
machine-check-avr instead. This is a system description decision based on the possibility
of programs being compiled to e.g. perform a read of uninitialised memory for some reason
but do not use the result further. As such, I have not included the program in this set.

7.4.4 Toy Programs
In my diploma thesis, I evaluated my previous model checker on simple toy programs,
and it was able to verify some of their action-reaction deadline properties [A.4, p. 49-60].
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Concisely, the programs are:

◦ Basic branch. Checks the value of an input pin and sets the output pin value
accordingly.

◦ Blink. Toggles an output pin (using PINB) with a 5-millisecond delay between
successive toggles.

◦ Gate array. Emulates five classic logic gates (buffer, inverter, AND, OR, XOR)
using GPIO.

◦ Switch with momentary selection. A mode input determines if the primary
input should behave as a momentary or toggle switch of the output pin. Inspired by
microcontroller-assisted relay switching schemes for e.g. guitar pedals.

◦ Independent nondeterminism. Uses single-bit branches to set different register
bits in succession, providing a verification challenge to the previous tool due to the
amount of non-determinism.

With the exception of the basic branch program, the toy programs were implemented
in assembly language. The basic branch program was implemented in C and is compiled
to different machine code in the debug and release configurations, so I used both for
verification. As the deadline properties in the previous checker are incomparable to CTL
properties, I have used these CTL properties for verification with machine-check-avr:

◦ Initialisation of the loop start with appropriate GPIO direction settings.
AF[(PC = w) ∧ a ∧ b], where w is the program counter at the start of the main
program loop, a represents the equality of all used GPIO direction registers to their
intended values, and b represents the equality of all used GPIO output registers to
their intended values at the start of the program loop.

◦ Invariant lock. AG[a ⇒ AG[a]]. Once the used GPIO direction registers are set
to the appropriate values, they never change.

◦ Recovery. AG[EF[(PC = w) ∧ b]]. It is always possible to return to the start of
the program loop with the used GPIO output registers set to their intended values
at the start of the program loop.

The inherent property of the machine-code system, ensuring that no panics occur, is verified
separately from other properties. While verifying the other properties, it is assumed that
the inherent property holds.

Note 7.4.3. In the independent nondeterminism program, no output was used, so instead
of the output value register, the relevant working register was used for verification.
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Table 7.2: Measurements of machine-code verification of toy programs using machine-
check-avr. For the states and transitions, the first number shows the total generated
number, while the second number shows the number in the final state space.

Program name Property name Result Refin. States Transitions CPU time [s] Mem. [MB]

Basic branch (debug) Inherent ✓ 2 26 / 19 28 / 22 <0.01 6.02

Basic branch (debug) Initialisation ✓ 0 14 / 13 14 / 14 <0.01 3.97

Basic branch (debug) Invariant lock ✓ 2 26 / 19 28 / 22 <0.01 5.89

Basic branch (debug) Recovery ✓ 2 26 / 19 28 / 22 <0.01 6.02

Basic branch (release) Inherent ✓ 2 26 / 19 28 / 22 <0.01 5.89

Basic branch (release) Initialisation ✓ 0 14 / 13 14 / 14 <0.01 3.84

Basic branch (release) Invariant lock ✓ 2 26 / 19 28 / 22 <0.01 6.02

Basic branch (release) Recovery ✓ 2 26 / 19 28 / 22 <0.01 6.02

Blink Inherent ✓ 0 514 / 513 514 / 514 <0.01 4.61

Blink Initialisation ✓ 0 514 / 513 514 / 514 <0.01 4.99

Blink Invariant lock ✓ 0 514 / 513 514 / 514 <0.01 4.74

Blink Recovery ✓ 0 514 / 513 514 / 514 <0.01 4.74

Gate array Inherent ✓ 987 5784 / 3799 6771 / 4787 3.74 17.02

Gate array Initialisation ✓ 0 9 / 8 9 / 9 <0.01 3.97

Gate array Invariant lock ✓ 987 5784 / 3799 6771 / 4787 4.32 17.02

Gate array Recovery ✓ 987 5785 / 3799 6772 / 4787 4.34 16.51

Independent nondet. Inherent ✓ 384 1613 / 834 1997 / 1219 0.8 9.22

Independent nondet. Initialisation ✓ 0 6 / 5 6 / 6 <0.01 3.97

Independent nondet. Invariant lock ✓ 384 1613 / 834 1997 / 1219 0.78 9.09

Independent nondet. Recovery ✗ 193 819 / 423 1012 / 617 0.33 7.68

Momentary selection Inherent ✓ 29 1909 / 1842 1938 / 1872 0.56 10.11

Momentary selection Initialisation ✓ 0 8 / 7 8 / 8 <0.01 3.84

Momentary selection Invariant lock ✓ 29 1909 / 1842 1938 / 1872 0.5 10.37

Momentary selection Recovery ✓ 29 1909 / 1842 1938 / 1872 0.45 10.11

The results for the toy programs are shown in Table 7.2. All of the properties were
verified in fairly little time and memory. Only the verification result of the recovery of
the independent nondeterminism program is false, which I investigated. As the program
zeroes the working register and conditionally performs inclusive-OR to it in the program
loop, recovery to a zeroed working register can be impossible, so the verification result is
correct.

7.4.5 Factorial: Stack Overflow Avoidance
To show a more interesting application of machine-code verification, I wrote a program
that computes the factorial of an input number between 0 and 7, shown in Figure 7.5. The
output overflows above 5! = 120, but the focus here is on recursion behaviour rather than
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1 #include <avr/io.h>
2 int factorial(uint8_t n) {
3 if (n == 0) {
4 return 1; // factorial of 0 is 1
5 }
6 return n * factorial(n − 1); // compute the factorial recursively
7 }
8 int main(void) {
9 DDRD |= 0xFF; // set port D as output

10 while (1) {
11 // get the value 0−7 from the lower 3 bits of port B
12 uint8_t read_value = PINB & 0x07;
13 // write the factorial result to port D
14 PORTD = factorial(read_value);
15 }
16 }

Figure 7.5: The factorial program, written in C.

the output. The program uses recursive calls, which grow the program stack, threatening
to overwrite other variables located in memory (stack overflow). It is impossible to verify
that a stack overflow cannot occur using source-code verification unless the verification is
tightly integrated into the compiler. A machine-code verifier, on the other hand, can verify
the impossibility of stack overflow exactly using the property AG[t], where t determines
the stack pointer position.

In the AVR architecture, there is a single stack that grows downwards, typically from the
end of the memory, and the Stack Pointer (SP) is pre-decremented and post-incremented,
i.e. it always points to the byte below the innermost stack byte [21]. As such, it is possible
to verify that the stack overflow does not occur by ensuring SP ≥ v, where v is the highest
non-stack variable byte. As the Stack Pointer is 16-bit but retained in two 8-bit registers
SPL (Stack Pointer Low) and SPH (Stack Pointer High) on AVR, SP ≥ v can be rewritten
to SPH > vhigh ∨ (SPH = vhigh ∧ SPL ≥ vlow). Using binary search, it is possible to find
the highest value of v where no stack overflow occurs.

The results of verification of the factorial program are shown in Table 7.3. In addition
to the properties verified in the toy programs, I also verified stack properties. The com-
piled machine code uses the recursive calls in the debug target without optimisation. In
the release target, the factorial function is transformed into iterative computation in the
resultant machine code, which reduces the maximum stack size.

The inherent, initialisation, and invariant lock properties hold, which is expected. It
is also expected that recovery is impossible: the output is zero at the start of the main
program loop, but non-zero afterwards, and it is impossible for the output to become zero
again, even though the output value is factorial modulo 256: factorials up to 5! = 120
are non-zero modulo 256 trivially, 6! mod 256 = 208, and 7! mod 256 = 176. I found the
maximum stack size needed by manually binary-searching until I determined the properties
that together give the maximum value of v.

As the maximum SRAM location for ATmega328P is 0x08FF, the maximum stack size
is only 4 bytes for the release target, which corresponds to a call to the main function from
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Table 7.3: Measurements of machine-code verification of the factorial program using
machine-check-avr.

Target Property name Result Refinements States Transitions CPU time [s] Memory [MB]
Debug Inherent ✓ 576 68604 / 51595 70716 / 52940 24.37 233.28
Debug Initialisation ✓ 0 21 / 20 21 / 21 <0.01 3.84
Debug Invariant lock ✓ 576 68604 / 51595 70716 / 52940 35.05 238.51
Debug Recovery ✗ 576 68604 / 51595 70716 / 52940 35.29 234.48
Debug Stack above 0x08DD ✓ 576 68604 / 51595 70716 / 52940 32.86 237.08
Debug Stack above 0x08DE ✗ 3 844 / 748 855 / 756 0.01 8.58
Release Inherent ✓ 45 5917 / 4272 6082 / 4378 0.22 18.82
Release Initialisation ✓ 0 21 / 20 21 / 21 <0.01 3.84
Release Invariant lock ✓ 45 5917 / 4272 6082 / 4378 0.24 19.20
Release Recovery ✗ 45 5917 / 4272 6082 / 4378 0.27 18.94
Release Stack above 0x08FB ✓ 45 5917 / 4272 6082 / 4378 0.25 18.94
Release Stack above 0x08FC ✗ 0 21 / 20 21 / 21 <0.01 3.71

the initialisation code and a later call from main to factorial. For the debug target, the
maximum stack size is 34 bytes. In addition to the 2 bytes corresponding to the call to
main, the factorial function is called at most 8 times (decreasing from a value of 7 to a
value of 0 inclusively). It pushes two registers to the stack in its prelude, so that each call
of the function together with the prelude takes up 4 bytes, resulting in 2 + 8 · 4 = 34.

These maximum stack sizes might seem small as ATmega328P has 2048 bytes of SRAM,
but excessive recursion might preclude the use of a cheaper microcontroller. For example,
the related AVR ATtiny24A has only 128 bytes of SRAM, so even 34 bytes used by the stack
can be problematic. Using machine-check-avr, it is possible to select the appropriate
device while ensuring the stack never overwrites other variables.

7.4.6 Digital Calibration: Finding a Bug in a Realistic Program
In my previous bachelor thesis, I used the AVR ATtiny24A microcontroller for digital
calibration of an analog Voltage-Controlled Oscillator (VCO) [A.6, p. 28-30, 42-43, 48-
50]. The calibration is based on monotonicity of adjustment: as a digital potentiometer
controlling the VCO input voltage is adjusted in a specified direction, the VCO output
frequency rises. The optimal potentiometer setting is found using binary search based on
whether the VCO frequency is lower or higher than desired. The calibration program was
able to adjust the VCO satisfactorily for musical audio and is a practical example of where
a low-cost microcontroller may be used.

I simplified the calibration program, using the core calibration routine and replacing
the frequency estimation using a timer peripheral (input) and SPI digital potentiometer
control (output) with GPIO read and write, respectively, so that I could verify the program
using the current machine-check-avr. I considered only a single calibration for easier
verification. The simplified program is shown in Figure 7.6.
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1 #define F_CPU 1000000
2 #include <avr/io.h>
3 #include <util/delay.h>
4 // COMPLICATION: global variables that will store the reads
5 // volatile uint8_t irrelevant[8];
6 // volatile uint8_t pinb;
7 // volatile uint8_t pinc;
8
9 int main(void) {

10 // COMPLICATION: read to global variables
11 // for (uint8_t i = 0; i < 8; ++i) { irrelevant[i] = PINB; }
12 DDRC |= 0x01;
13 DDRD |= 0xFF;
14 while (1) {
15 // wait until we should calibrate
16 while ((PINC & 0x2) == 0) {}
17 // COMPLICATION: replace the line above with
18 // while 1 {
19 // pinc = PINC;
20 // if ((pinc & 0x2) != 0) { break; }
21 // }
22
23 // signify we are calibrating
24 PORTC |= 0x01;
25
26 // start with MSB of calibration
27 uint8_t search_bit = 7;
28 uint8_t search_mask = (1 << search_bit);
29 uint8_t search_val = search_mask;
30
31 while (1) {
32 // wait a bit
33 _delay_us(10);
34 // write the current search value
35 PORTD = search_val;
36 // wait a bit
37 _delay_us(10);
38 // get input value and compare it to desired
39 uint8_t input_value = PINB;
40 // COMPLICATION: replace the line above with
41 // pinb = PINB; input_value = pinb;
42
43 if ((input_value & 0x80) == 0) {
44 // input value lower than desired
45 // we should lower the calibration value
46 search_val &= ∼search_mask;
47 }
48
49 if (search_bit == 0) {
50 // all bits have been set, stop
51 // FIX: add the following line
52 // PORTD = search_val;
53 break;
54 }
55 search_bit −= 1;
56 // continue to next bit
57 search_mask >>= 1;
58 // update the search value with the next bit set
59 search_val |= search_mask;
60 }
61 // calibration complete, stop signifying that we are calibrating
62 PORTC &= ∼0x01;
63 }
64 }

Figure 7.6: The source code of the calibration program (with the replaced peripheral
interactions) which was compiled to produce the machine code under verification. The
fixed versions have the line below FIX uncommented, and the versions with complications
are changed as per the COMPLICATION comments.
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Table 7.4: Measurements of machine-code verification of the calibration program using
machine-check-avr, without complications.

Version Target Property name Result Refin. States Transitions CPU time [s] Mem. [MB]

Original Debug Inherent ✓ 513 14090 / 13059 14603 / 13573 6.65 42.50

Original Debug Initialisation ✓ 0 18 / 17 18 / 18 <0.01 3.84

Original Debug Invariant lock ✓ 513 14090 / 13059 14603 / 13573 8.86 43.65

Original Debug Recovery ✗ 513 14090 / 13059 14603 / 13573 8.04 42.62

Original Debug Stack above 0x08FD ✓ 513 14090 / 13059 14603 / 13573 7.68 43.22

Original Debug Stack above 0x08FE ✗ 0 18 / 17 18 / 18 <0.01 3.71

Original Release Inherent ✓ 512 11767 / 10738 12279 / 11251 7.17 36.35

Original Release Initialisation ✓ 0 16 / 15 16 / 16 <0.01 3.84

Original Release Invariant lock ✓ 512 11767 / 10738 12279 / 11251 9.48 37.50

Original Release Recovery ✗ 512 11767 / 10738 12279 / 11251 8.58 36.48

Original Release Stack above 0x08FD ✓ 512 11767 / 10738 12279 / 11251 8.5 37.12

Original Release Stack above 0x08FE ✗ 0 16 / 15 16 / 16 <0.01 3.97

Fixed Debug Inherent ✓ 513 14090 / 13059 14603 / 13573 6.34 42.36

Fixed Debug Initialisation ✓ 0 18 / 17 18 / 18 <0.01 3.97

Fixed Debug Invariant lock ✓ 513 14090 / 13059 14603 / 13573 8.78 43.63

Fixed Debug Recovery ✓ 513 14090 / 13059 14603 / 13573 7.32 42.75

Fixed Debug Stack above 0x08FD ✓ 513 14090 / 13059 14603 / 13573 7.33 43.26

Fixed Debug Stack above 0x08FE ✗ 0 18 / 17 18 / 18 <0.01 3.84

Fixed Release Inherent ✓ 512 13040 / 12011 13552 / 12524 7.13 39.81

Fixed Release Initialisation ✓ 0 16 / 15 16 / 16 <0.01 3.97

Fixed Release Invariant lock ✓ 512 13040 / 12011 13552 / 12524 7.3 40.96

Fixed Release Recovery ✓ 512 13040 / 12011 13552 / 12524 6.94 40.19

Fixed Release Stack above 0x08FD ✓ 512 13040 / 12011 13552 / 12524 6.8 40.58

Fixed Release Stack above 0x08FE ✗ 0 16 / 15 16 / 16 <0.01 3.97

I used the release configuration of the calibration program and verified the same kinds
of properties as in the factorial example, as shown in the columns in Table 7.4 denoted as
Original. The inherent, reachability, and invariant lock properties hold as expected. The
maximum stack size is 2 bytes, caused by a call to main from initialisation code.

While I did expect the recovery property to hold, machine-check-avr determined that
it does not hold. I investigated further and realised that the lowest output bit is cleared
in search_val but not in PORTD. As the output can never recover to being fully zero, the
recovery property is violated. Notably, this is exactly the same failure mode as in Example
5.1.1, but has less severe consequences as the output is only slightly degraded. However,
the degradation is more difficult to detect and means that the system always performs
below its capabilities (as if we used a 7-bit rather than an 8-bit digital potentiometer). I
do not believe that the problem would be detected without formal verification or an actual
problem caused by the degradation.
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Table 7.5: Measurements of machine-code verification of the calibration program with
complications introduced, using machine-check-avr.

Version Target Property name Result Refin. States Transitions CPU time [s] Mem. [MB]

Original Debug Inherent ✓ 771 20674 / 17330 21445 / 18102 19.06 72.52

Original Debug Initialisation ✓ 0 176 / 175 176 / 176 <0.01 4.22

Original Debug Invariant lock ✓ 771 20674 / 17330 21445 / 18102 30.34 74.13

Original Debug Recovery ✗ 770 20671 / 17333 21441 / 18104 29.6 72.69

Original Debug Stack above 0x08FD ✓ 771 20674 / 17330 21445 / 18102 30.09 73.74

Original Debug Stack above 0x08FE ✗ 0 176 / 175 176 / 176 <0.01 4.48

Original Release Inherent ✓ 771 18865 / 15780 19636 / 16552 19.55 67.72

Original Release Initialisation ✓ 0 172 / 171 172 / 172 <0.01 4.48

Original Release Invariant lock ✓ 771 18865 / 15780 19636 / 16552 24 69.53

Original Release Recovery ✗ 770 18862 / 15783 19632 / 16554 24.07 68.24

Original Release Stack above 0x08FD ✓ 771 18865 / 15780 19636 / 16552 22.22 68.92

Original Release Stack above 0x08FE ✗ 0 172 / 171 172 / 172 <0.01 4.35

Fixed Debug Inherent ✓ 771 20674 / 17330 21445 / 18102 25.76 72.53

Fixed Debug Initialisation ✓ 0 176 / 175 176 / 176 <0.01 4.48

Fixed Debug Invariant lock ✓ 771 20674 / 17330 21445 / 18102 31.72 74.24

Fixed Debug Recovery ✓ 771 20674 / 17330 21445 / 18102 27.53 73.27

Fixed Debug Stack above 0x08FD ✓ 771 20674 / 17330 21445 / 18102 28.17 73.51

Fixed Debug Stack above 0x08FE ✗ 0 176 / 175 176 / 176 <0.01 4.48

Fixed Release Inherent ✓ 771 19121 / 16036 19892 / 16808 20.06 68.67

Fixed Release Initialisation ✓ 0 172 / 171 172 / 172 <0.01 4.35

Fixed Release Invariant lock ✓ 771 19121 / 16036 19892 / 16808 22.18 70.24

Fixed Release Recovery ✓ 771 19121 / 16036 19892 / 16808 16.83 69.00

Fixed Release Stack above 0x08FD ✓ 771 19121 / 16036 19892 / 16808 16.25 69.84

Fixed Release Stack above 0x08FE ✗ 0 172 / 171 172 / 172 <0.01 4.48

I fixed the problem by writing search_val to PORTD before breaking from the loop, as
shown in Figure 7.6. The results are shown in the columns in Table 7.4 denoted as Fixed.
The recovery property is no longer violated.

The bug affects the original calibration program by reducing the number of used digital
potentiometer values7 from 256 to 128, which is hard to find because the output quality is
degraded but not significantly enough to be noticeable without special care. It is slightly
lucky that the reachability property uncovered the bug: no bug would be uncovered if the
initial value had the lowest bit set to 1. To thoroughly reveal the problems with unusable
output values, the recovery property would ideally be parametric, so it could be verified
that all output values from 0 to 255 are used.

The bug would be hard to find when using the ubiquitous source-code verification with
LTL properties. While it would be possible to rewrite the code so it does not use AVR-
specific peripherals and functions, the need to write an LTL property that would detect

7The MCP4251 digital potentiometer has 257 steps, but one step is ignored in the calibration program.
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the bug, e.g. F(PORTD = 2), is not obvious when we do not know about the bug yet.
Furthermore, the reachability property does not detect a bug where output values become
blocked indefinitely for some reason. On the other hand, the property AG[EF[PORTD=x]]
parameterised with x from 0 to 255 directly corresponds to ensuring all output values can
be used without being blocked indefinitely, which is what we would ideally want.

Introducing complications. To test the robustness of verification using machine-
check, I also introduced two versions with complications that would make naïve verification
without abstraction completely infeasible, the modifications shown in Figure 7.6: there
is an an initial 64-bit read, and explicit read of an 8-bit input port to a variable before
obtaining the single bit that determines whether the calibration should start. The variables
are declared as volatile to ensure they are not optimised away, resulting in are in more
than 280 reachable states even if not considering the uninitialised memory values. As seen
in Table 7.5, this results in the verification time rising to a factor of at most 4.1 and the
memory usage rising to a factor of at most 1.9. I consider this to be a success as it shows
the tool is behaving reasonably well in the face of irrelevant modifications even with the
simple abstraction domain and system-independent heuristics.

7.5 Assessment of Capabilities
and Comparison to Other Tools

The tool I created during my doctoral studies, machine-check, is capable of verifying CTL
properties of machine-code systems, as evidenced by the results presented in Section 7.4.
I was able to verify important properties, including maximum stack size and recovery, in
programs for the AVR ATmega328P microcontroller. The programs were simpler than
typical real-world AVR programs, with only general-purpose I/O peripherals used, but
their intricacy was approaching real-world programs ideal for the low-cost and low-power
ATtiny devices. The verification results generally matched the expectations, except for
one case where the unexpected result was caused by a previously undiscovered bug in the
verified program, which demonstrates the capability for bug-finding.

While the results cannot be directly compared to those of any other tool identified in
Section 3.1 due to the differences in capabilities, system descriptions, specifications, public
availability, I will compare machine-check to the other tools qualitatively, focusing on
the comparison of their capabilities.

7.5.1 Model-Checking Direction
The model-checking direction is exemplified by the Arcade.µC tool, which is unfortunately
no longer in development and is not publicly available, and which directly inspired the
predecessor of machine-check. Both are targeted at verification of embedded systems,
especially on 8-bit AVR microcontrollers. The techniques I introduced in Chapter 4, 5,
and 6 directly improve on the capabilities of Arcade.µC:
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◦ Thanks to the description capability introduced in Chapter 4, instead of hard-coded
processor simulators or state-space generators that considered the processor intrica-
cies [7], systems described by arbitrary finite-state machines can be verified.

◦ Due to the TVAR framework from Chapter 5, machine-check is theoretically ca-
pable of verifying CTL properties of any such system in finite time (of course, prac-
tically limited by available time and memory). On the other hand, Arcade.µC was
limited to ACTL properties if abstraction was used, and the abstraction could be too
coarse, preventing verification [4].

◦ In the three-valued abstraction currently used in machine-check, not just bitwise,
but also arithmetic operations can be computed quickly thanks to the techniques
introduced in Chapter 6.

While there are results of benchmarking versions of Arcade.µC, I do not feel it is possible
to directly compare the given results due to the differences in capabilities. For example, in
the ATmega16 case studies by Gückel [7, p. 145-149], it can be seen that the choice of the
abstraction heavily impacts the verification time and memory, and it is unclear which one
should be chosen for comparison. In the absence of having the tool available, it is unclear
how much the abstraction strategies would impact different programs under verification,
such as the ones in Section 7.4. As such, I refrained from making direct comparisons.

7.5.2 Program-Analysis Direction
In the program-analysis direction, the static analysis is exemplified by CodeSurfer/x86
[53, 54, 55] and verification is exemplified by the tool MCVETO [72, 69]. Both are
specialised towards x86 user-mode executables, posing different problems to embedded-
system verification: the 32-bit register width makes explicit verification without abstraction
much less feasible. Only safety properties are considered. While CodeSurfer/x86 can
determine some properties using the value-set analysis even for programs with 100 thousand
instructions [53, p. 15], it is questionable how this would be comparable, as the value-set
analysis can be highly overapproximative. This should be resolved by MCVETO, but
the practical usability is questionable without quantitative data given. In any case, the
tools seem quite dependent on the conventional Application Binary Interface (ABI) usage
so that static analysis can be performed, which is not a problem for machine-check.

7.5.3 Automated-Theorem-Proving Direction
The tools based translation to predicate calculus formulas and solving using Automated
Theorem Provers are strong potential contenders to machine-check. I especially consider
Islaris [1] and Serval [2] to be of interest, and will consider their capabilities first:

◦ Islaris and Serval support the Sail language for the Instruction Set Architecture
(ISA) description, intended more towards usage for a general computer rather than
embedded programs due to lack of peripheral interactions in the used descriptions.
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◦ Islaris supports program loops via loop invariants (that may be discovered auto-
matically or require hints), while Serval does not support loops, precluding use for
whole systems rather than programs, but in theory allowing completely automatic
verification of programs that do not contain loops.

◦ Both Islaris and Serval currently only support safety properties.

The use of Hoare logic and Automated Theorem Proving mean that the tools are much
better suited for verification of higher-level properties such as the function memcpy behaving
according to its contract using Islaris [56], which requires automated reasoning with some
aid from the tool user. The weakness is that the user must have specialist knowledge of
ATP to guide the proof. Even Serval is affected, requiring the specifications in the purely
functional language Rosetta, which would be unfamiliar to non-specialists. In machine-
check, only some general knowledge of CTL is needed, and the supported fairly imperative
subset of the Rust language should be more understandable by typical developers.

In my opinion, the addition of TVAR and the focus on generality draws machine-
check a bit closer to theoretical proving than the previous model-checkers. The choices
of refinement must be done carefully, resembling the choice of how to continue with a
proof. I reckon that further development of machine-check will result in more focus
on the choices of abstraction and refinement, with the great potential for inspiration by
the more proof-based techniques. In time, the directions may complement each other,
model-checking tools supporting development of both non-critical and critical programs
by performing fully automatic verification where it is possible in reasonable time, with
ATP-based tools usable for critical programs and properties that the model-checking tools
could not feasibly verify using the implemented techniques.

7.5.4 General Assessment
Overall, I consider the goal of the research presented in this thesis, given in Chapter 1 as
constructing a solid yet flexible theoretical groundwork, fulfilled. The combination of the
translation of simulable descriptions presented in Chapter 4 and discussed more extensively
in this chapter, the input-based TVAR framework presented in Chapter 5, and the bit-
vector abstraction with fast abstract arithmetic presented in Chapter 6, has resulted in a
fairly well-behaved and extensible tool. For real-world use, I believe furtherr improvements
are necessary:

◦ Custom-written descriptions can be prone to errors, as illustrated in Section 7.4.3.
I feel that the move toward first-party formal descriptions of ISAs and, hopefully,
whole systems including peripherals, is desirable. As such, in addition to the currently
supported custom-written ATmega328P description, I plan to add translation of
Sail descriptions to the descriptions of finite-state machines supported by machine-
check. This is completely possible in theory, although the 32-bit architectures can
significantly deteriorate the feasibility of machine-code program verification, which
was my reason for starting with an 8-bit architecture in the first place.
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◦ While the time and memory necessary for verification were reasonable for the machine-
code programs presented, they would not be for more complex ones. The abstraction
domains and refinement strategies could be extended and tuned generally without
any system-dependent information so that the number of states and refinements is
lower. While I would expect general improvements to provide usable results for verifi-
cation of real-world machine-code programs, the descriptions could also be extended
with verification hints (e.g. that the Program Counter is the most important variable)
if the general approach is insufficient.

◦ Working with machine-check could be made more user-friendly. While I did not
discuss the user experience in detail in this thesis, only lightly touching on it in
Chapter 4, user-friendliness is key to the adoption of the tool by others. I have begun
the work on this, creating a Graphical User Interface in addition to the command-line
experience, and setting up a website for the project, but further work is necessary.

All things considered, the techniques I have introduced during my doctoral studies and
implemented in machine-check make it possible to verify interesting and useful properties
of machine-code programs. There are still practical issues precluding serious non-academic
use of the tool. However, in my opinion, it is only a matter of time and labour before
machine-code verification based on model checking with abstraction is successfully and
consistently used to improve practical systems.
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Chapter 8
Conclusion

At the outset of my doctoral studies, I set out to improve the state of the art in formal
verification of programs in machine code, which had been under-researched. During my
studies, I have introduced three novel techniques to resolve known challenges, published
two of them, and implemented them in my free and open-source formal verification tool
machine-check. The introduced techniques and their implementations form a solid foun-
dation of machine-code verification through abstraction-based model checking.

8.1 Summary
In Chapter 1, I introduced the concept of and the need for formal verification of machine-
code programs, enumerated my contributions, and provided an overview of the organisation
of this thesis.

In Chapter 2, I introduced the background of the work. I showed how source-code,
machine-code, and hardware systems have some basic commonalities despite their differ-
ences, and noted that machine-code systems are formed by machine-code programs together
with the guarantees about the processor they are executed on, with possible additional
guarantees. I introduced basic formalisms for model checking, discussed the grouping of
advanced techniques, and introduced the concept of abstraction refinement.

In Chapter 3, I discussed the state of the art in verification of digital systems and
noted that abstraction refinement is commonly used in the best software- and hardware-
verification tools to mitigate the problem of exponential explosion. I noted that verification
of machine-code systems is under-researched in the context of model checking, and that a
major problem specific to machine-code verification has been the difficulty of supporting
easily written processor descriptions while ensuring that advanced model-checking tech-
niques such as abstraction refinement can be used.

In Chapter 4, I presented my technique that solves the difficulty. The descriptions
are written in the Rust programming language and meta-programming is used to trans-
form them into verification equivalents, usable for model-checking with abstraction re-
finement. I discussed how this solution is fully automatic and opaque to the processor
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description writer, allowing those not familiar with formal verification to write the descrip-
tions. I showed an example of a simplified RISC processor described in a way it can be
transformed into verification equivalents and discussed the subset of the Rust language
that can be used in the descriptions.

In Chapter 5, I discussed a novel Three-Valued Abstraction Refinement (TVAR) frame-
work that I introduced together with my supervisor, which can verify properties that are
not verifiable by the conventional Counterexample-guided Abstraction Refinement (CE-
GAR). I noted the problems of previous TVAR frameworks and based my framework on
a novel input-based approach. We formally proved that the framework produces correct
results in finite time for finite systems as long as requirements are met. We experimen-
tally evaluated an implementation of an instance of the introduced framework, showing its
potential to reduce exponential explosion on simple digital systems.

In Chapter 6, I showed how I and my supervisor resolved a problem in previous ap-
proaches to machine-code model checking that used three-valued bit-vector abstraction,
namely that it was not possible to adequately resolve arithmetic operations. We were
able to devise an algorithm that produces correct results with linear complexity, provided
the original non-abstract operation has constant complexity. We then proved that the
operation results are optimal for addition, subtraction, and general summation. For multi-
plication, we devised an algorithm that produces optimal results with quadratic complexity.

In Chapter 7, I discussed my publicly available, free, and open-source tool machine-
check that I created during my doctoral research, implementing the techniques from Chap-
ters 4, 5, and 6. I discussed how the techniques are combined, and noted some further
implementation difficulties and their resolution. I evaluated the tool using machine-code
programs for the ATmega328P microcontroller and was able to verify their interesting
properties. Notably, I found a bug in a real-world program from my previous bachelor
thesis [A.6] using a simplified program that retained its core behaviour. I discussed the
capabilities of machine-check compared to other machine-code verification tools.

8.2 Contributions of the Dissertation Thesis
In my dissertation thesis, the results of my doctoral research are described and brought
into a general context. In Chapters 2 and 3, the theoretical background and the state of
the art are discussed, and valuable insights frame the subject matter:

◦ All digital systems have basic commonalities: finite-length bit-vector variables, index-
able arrays of bit-vectors, and fixed-point bit-vector operations. These commonalities
are instrumental for the effective expression of the system using other system levels.
The systems can be formalised as Moore machines.

◦ The commonly used temporal logics are Computation Tree Logic (CTL), Linear Time
Logic (LTL), and CTL*, especially as there are known algorithms for model-checking
against them that depend only linearly on the size of the state space.
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◦ Model-checking is often used with abstraction, which can further be extended for
abstraction refinement. The two main methodologies for abstraction refinement are
Counterexample-guided Abstraction Refinement (CEGAR) and Three-valued Ab-
straction Refinement (TVAR).

◦ Use of CEGAR is very common in state-of-the-art verification tools, typically com-
bined with symbolic verification techniques and using Satisfiability Modulo Theories
(SMT) solvers.

◦ The focus on CEGAR and degenerate temporal properties, especially reachability, in
source-code verification tools may present blind spots in verification, as can the re-
liance on compilers to produce the correct machine code that is not formally verified.
Using Three-valued Abstraction Refinement (TVAR) makes it possible to verify prop-
erties not verifiable using CEGAR, and using machine-code verification can reveal
problems not possible to find using source-code verification.

In the following chapters, I described three novel techniques I devised during the course of
my research:

◦ Simulable machine-code system descriptions translated to their verification equiva-
lents by meta-programming, combining a previously published overview [A.2] with
added material original to the thesis.

◦ A Three-Valued Abstraction Refinement framework (TVAR) using input-based in-
stead of state-based splitting to resolve problems of previous TVAR frameworks and
provide a simpler representation, containing material available as a preprint [A.3].

◦ Fast algorithms for computation of the best results of arithmetic operations on three-
valued abstract bit-vectors, containing previously published material [A.1].

Finally, I described the combination of the techniques in my implementation of the formal
verification tool machine-check that I created during my doctoral research, and showed
that the tool is capable of machine-code program verification.

8.3 Future Work
In this thesis, I have laid the groundwork for verification of machine code using model
checking with abstraction refinement, implementing the techniques introduced in my tool
machine-check. I aim to continue in this work further. While machine-check is cur-
rently able to verify simple digital systems, including some machine-code systems, it is
still necessary to improve the practical usability. Based on the research and experiments
presented in this thesis, I have identified the following major areas of further interest:

◦ Abstraction and refinement choices and strategies. As seen in Section 5.4 and
Subsection 7.1.2, the choices of good abstraction, initial generating automaton, and

125



8. Conclusion

the refinement heuristics are crucial for good practical performance of model checking
with abstraction refinement. More powerful abstraction domains might help where
the three-valued bit-vector abstraction domain does not help with mitigating expo-
nential explosion. I also anticipate that abstract-state decay introduced in Chapter 5
offers much yet-untapped potential for a reduction of abstract state space sizes.

◦ Support of official formal processor descriptions. I believe that the recent work
on formally specifying processor Instruction Set Architecture (ISA) noted in Section
3.1 is of major interest, especially the official RISC-V ISA specification in the Sail
language [90]. I plan to investigate the automatic translation of the specification to
the subset of the Rust language supported by machine-check.

◦ Parametric systems. As noted in Subsection 2.1.4, some systems are given with
incomplete guarantees, so we are in fact trying to prove or disprove a property for
a class of systems rather than a single system. While I have partially alleviated
the problem in machine-check by disallowing some operations using inherent prop-
erties, I believe that it is important to be able to generally verify in the context
of incomplete guarantees, where the systems can be described as parametric. This
would be especially convenient in the context of processor peripherals, where they
could be described partially without precluding verification unless the property under
verification depended on the exact behaviour not described.

Building on the groundwork laid down in this thesis allows for further formal-verification
research backed with a practical component through extending machine-check. There
are also more practical problems to solve, such as the user-friendliness of the interface or
the ability to write descriptions more elegantly and use more advanced Rust constructs.
Programmers unfamiliar with formal verification will only start using formal verification
tools if there is a simple and understandable process for obtaining useful verification results,
helping them with development. Only then will we be closer to the overarching goal
of formal verification, designing safe, secure, and useful systems.
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