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Abstract—Correctness of safety- and security-critical systems
can be ensured by formal verification. While formal verification
of source-code and hardware systems is widely used, existing
approaches to formal verification of machine code are severely
limited in verification strength and processor choice. In this paper,
a formal verification tool written in the Rust programming lan-
guage is introduced, with emphasis on machine-code verification.
The problems of previous tools are circumvented by abstraction
refinement, an advanced formal verification technique. System
behaviour is defined using simulation descriptions written in a
limited subset of Rust, allowing straightforward extension of the
tool to new architectures and processor model using architecture
and processor manuals. A novel technique of translating the
descriptions to their verification analogues at compile-time enables
fast verification using abstraction refinement without any need for
formal verification knowledge by the description writer.

Index Terms—machine code, embedded systems, formal verifi-
cation, model checking, Rust

I. INTRODUCTION

A large amount of embedded devices in our lives is safety-
and security-critical. Many modern microcontrollers are de-
signed around safety (such as the ARM Cortex-R series) or
security (such as ARM Cortex-M33). Considerable efforts are
being spent to verify that both the hardware and the source code
are correct. Verification is either informal, possibly finding a
bug but giving no guarantees, or formal, guaranteeing that the
system upholds properties given by a specification.

Even though formal verification is crucial for creating safe
and secure systems, to the author’s knowledge, there have been
only abortive attempts at formal verification of machine-code
systems, i.e. systems comprised of a processor (in embedded
devices, typically a microcontroller) and the executed program
in the machine language of the processor. There is much
difficulty in tackling the problem: the machine-code program
is typically highly complicated and lacks constructs beyond
the instruction level, and its behaviour is dependent on the
processor’s behaviour, complicated by itself.

Unfortunately, some properties are impossible or infeasible
to verify by other means than by formal machine-code veri-
fication (which is visualised in Figure 1), mainly relating to
peripheral and memory manipulation dependent on the device
and its configuration. Even if the problem is introduced in
source code, formal verification of machine code can reveal
the possibility of a bug due to the possibility of unexpected
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Fig. 1. A high-level overview of formal verification of machine-code systems.
The solid yellow cells represent inputs, while the dashed blue cells represent
automated results. The processor and machine code are combined to form the
system under verification. It is then determined if the specification holds.

memory manipulation, potentially preventing a critical, hard-
to-fix vulnerability. While some vulnerabilities can be fixed by
Over-the-Air updates, other vulnerabilities may be unfixable
even if discovered. In an extreme case, a security vulnerability
in manufacturer-provided read-only machine code affecting
a whole line of secure-by-design microcontrollers was unpatch-
able in the already produced microcontrollers [1].

The author has developed machine-check, a formal verifica-
tion tool written in the Rust programming language. The tool
can verify Computation Tree Logic properties [2] of arbitrary
finite-state machines but is tailored especially for machine-code
verification in microcontroller-based systems. Unlike previous
model-checking tools, machine-check is free, open-source, and
publicly available1. To avoid problems encountered by the
previous tools, the microcontroller behaviour is specified by
finite-state machine simulable descriptions written in the Rust
language, which are then automatically translated to their veri-
fication analogues. This means the microcontroller description
writer does not need any formal verification knowledge, but
the verification still benefits from advanced formal verification
techniques implemented in machine-check. In this paper, the
specifics of simulation descriptions in machine-check will be
given using a simple RISC microcontroller example, showing
the benefits of the novel translation to verification analogues.

1The latest version is available from https://crates.io/crates/machine-check.
The version discussed in this paper is available from https://crates.io/crates/
machine-check/0.2.0.
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II. PREVIOUS WORK

The most important previous research into machine-code
verification for embedded systems was the [mc]square project
(later renamed to Arcade.µC) [3]–[6]. The verifier was ini-
tially tailored to a specific microcontroller, leading to further
research into support for other microcontrollers by creating
state space generators from system descriptions [7]. However,
that approach was limited by the necessity of using a specific
newly designed language and a requirement for the descrip-
tion writer to tailor the description to use formal verification
techniques. While the Arcade.µC project is now defunct, the
publications inspired further research [8]–[10]. There were also
other approaches to machine-code formal verification unrelated
to Arcade.µC [11], [12]. However, no previously developed
tools seem to be publicly available.

As for formal verification techniques used for machine-code
systems, the predominant approach is model checking, where
a graph of successive states (the state space) corresponding to
the system under verification is constructed before verifying
the state space against the specification [13]. However, as
even simple microcontrollers contain kilobytes of uninitialized
memory, it is infeasible to represent the whole state space
explicitly. Therefore, advanced machine-code verification tools
use abstraction, representing multiple concrete states by one
abstract state. For example, in three-valued abstraction [4], each
abstract state bit can be zero, one, or unknown (X), which
means the abstract state represents both the concrete states
where the bit is zero and ones where the bit is one. Such
abstraction allows uninitialized memory and inputs to have little
effect on state space size, but many properties of the system
become unverifiable due to loss of information (the verification
becomes incomplete). Incompleteness can be counteracted by
abstraction refinement, which deductively reduces the amount
of abstraction, but brings yet another layer of difficulty to tool
development. As such, previous machine-code verification tools
did not use abstraction refinement or used only simple versions
of it, allowing incompleteness and reducing tool usefulness.

III. VERIFYING SYSTEMS WITH MACHINE-CHECK

The high-level overview of machine-code verification via
machine-check is visualised in Figure 2. The simulable proces-
sor description, written in Rust code, is translated to verification
analogues (allowing usage of abstraction with refinement during
the formal verification), which are compiled together with algo-
rithms that control the verification process. The machine code
and specification are provided as arguments to the resultant exe-
cutable. As such, the verification is faster and uses less memory
than if the system was interpreted, yet allows for flexible,
iterative development of the machine code and specification.
The verifier executable can also be used on a dedicated server
without installing the Rust language ecosystem.

Simulation description and machine code examples will be
given later in Section IV. As for the specifications, only a cur-
sory description will be given here due to the scope of the paper.
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Fig. 2. A high-level overview of machine-check machine-code system
verification process. The processor description is translated to verification
analogues, then compiled together with verification control algorithms to form
a verifier executable for the given processor, visualised in a solid green cell. The
verifier is executed with the machine code and specification given as arguments,
performing formal machine-code verification as in Figure 1. The compilation
step ensures speed gain over interpretation.

Currently, Computation Tree Logic (CTL) [2] specifications are
supported. Essentially, in addition to expressions on the states
of systems, CTL can also be used to specify a variety of causal
relationships between states of the system. A few examples of
what can be expressed using CTL follow:

• Safety. A reserved register is never written to.
• Stabilization. Once a peripheral is enabled, it remains so.
• Action-reaction. Once a button is pressed (input pin be-

comes low), an LED toggles (output pin becomes negated).
• Recovery. It is always possible to return to the start of the

main program loop with some sequence of inputs, i.e. the
system never becomes irrecoverably stuck.

The verification result is a yes-no answer of whether the
specification holds for the system. By design, machine-check
is complete, always producing the yes-no answer in finite time
(although the needed computation time and memory may be
impractical for some combinations of system and specification).
If necessary, the user can inspect the abstract state space to
determine the cause of a bug.

IV. PROCESSOR DESCRIPTIONS

The simulable descriptions in machine-check are designed
to make describing microcontroller-based systems simple. Even
so, real architectures are still time-consuming to implement
due to the size of the instruction set. For example, the AVR
ATmega328P microcontroller was described in ∼3000 lines
of code, with simple peripheral support only. Fortunately, once
coded, the vast majority of the description can be reused for
other similar microcontrollers with the same architecture.

A simulable description of a very simplified RISC microcon-
troller2 is shown in Figure 3. The description is written in a sub-
set of valid Rust code, using specially provided machine-check
types for simple transcription of behaviour from datasheets. The
machine-code system can be immediately simulated in Rust

2The whole description is available at https://docs.rs/crate/machine-check/
0.2.0/source/examples/simple risc.rs.

https://docs.rs/crate/machine-check/0.2.0/source/examples/simple_risc.rs
https://docs.rs/crate/machine-check/0.2.0/source/examples/simple_risc.rs


by constructing the System structure, with the machine code
under simulation contained in field progmem, and using the
init and next functions to generate successive states using
a given sequence of inputs.

While simulation is performed with a single input sequence,
all input sequences must be considered for formal verification.
Since each successive state only depends on the previous state
and input, it is possible to generate a graph of successive
states (i.e. the state space) that completely captures the system
behaviour. However, as discussed in Section II, this is infeasible
in practice. As such, the machine_description macro in
Figure 3 automatically generates verification analogues of the
machine, allowing the use of advanced abstraction-refinement
techniques. In case the description code does not conform to
the subset of Rust processable by machine-check translation,
a compilation error is issued so the problem can be fixed.

Each system has specific construction parameters. For ex-
ample, classic finite-state machines are constructed without any
parameters, while machine-code systems must be provided with
the machine code, with varying specifics such as instruction
length and number of instructions. As such, in machine-check,
constructing the system is the responsibility of the description
writer. For machine-code systems, the intended approach is to
read the machine code from a file given as an argument to
the verifier. However, for conciseness, in Figure 4, the example
system from Figure 3 is constructed with a hard-coded toy
machine-code program. The constructed system is handed off to
the main routine of machine-check afterwards, which verifies
a specification obtained from arguments to the executable. As
such, properties of the system obtained by compiling the code
from Figures 3 and 4 can be formally verified. For example:

• Register 1 is set to 1 before the main loop is reached.
• It is always possible to reach program location 9.
• Program locations above 9 are never reached.

The properties are verified nearly instantaneously (< 1 s) and
with insignificant memory usage. In comparison, formal veri-
fication by state space construction would require constructing
more than 22

8

= 2256 states, which is completely infeasible.

V. FUTURE WORK

Currently, machine-check is still in an experimental stage.
While the underlying approach is general and flexible enough
to build on, there is still work to be done before it is truly ready
for industrial and academic use.

Full stabilization of machine descriptions and specifications
is paramount. The specification format in particular is currently
very rudimentary and requires a reasonable redesign so that it
is easy to write both simple and complex specifications. To
comfortably support compiled programs, it is also necessary
to add the ability to refer to their debug symbols within
specifications. The author plans to release an initial stable
version of machine-check once these problems are resolved.

A more interactive and helpful verification process is also
planned, so that the reason why a specification does not hold
can be discovered quickly and easily.

1 #[machine_check::machine_description]
2 mod machine_module {
3 pub struct Input {
4 gpio_read: BitvectorArray<4, 8>,
5 uninit_reg: BitvectorArray<2, 8>,
6 uninit_data: BitvectorArray<8, 8>,
7 }
8 impl ::machine_check::Input for Input {}
9 pub struct State {

10 pc: Bitvector<7>,
11 reg: BitvectorArray<2, 8>,
12 data: BitvectorArray<8, 8>,
13 }
14 impl ::machine_check::State for State {}
15 pub struct System {
16 pub progmem: BitvectorArray<7, 12>,
17 }
18 impl ::machine_check::Machine for System {
19 type Input = Input;
20 type State = State;
21 fn init(&self, input: &Input) -> State {
22 State {
23 pc: Bitvector::<7>::new(0),
24 reg: Clone::clone(&input.uninit_reg),
25 data: Clone::clone(&input.uninit_data),
26 }
27 }
28 fn next(&self, state: &State, input: &Input)
29 -> State {
30 let instruction = self.progmem[state.pc];
31 let mut pc = state.pc + Bitvector::<7>::new(1);
32 let mut reg = Clone::clone(&state.reg);
33 let mut data = Clone::clone(&state.data);
34 ::machine_check::bitmask_switch!(instruction {
35 "00dd_00--_aabb" => { // add
36 reg[d] = reg[a] + reg[b];
37 }
38 "00dd_01--_gggg" => { // read input
39 reg[d] = input.gpio_read[g];
40 }
41 "00rr_1kkk_kkkk" => { // jump if bit 0 is set
42 if reg[r] & Bitvector::<8>::new(1)
43 == Bitvector::<8>::new(1) {
44 pc = k;
45 };
46 }
47 "01dd_kkkk_kkkk" => { // load immediate
48 reg[d] = k;
49 }
50 "10dd_nnnn_nnnn" => { // load direct
51 reg[d] = data[n];
52 }
53 "11ss_nnnn_nnnn" => { // store direct
54 data[n] = reg[s];
55 }
56 });
57 State { pc, reg, data }
58 }
59 }
60 }

Fig. 3. Example description of a simplified Harvard-architecture RISC micro-
controller as a finite-state machine. Less important code details are omitted for
clarity.
Input, state, and system structures are defined on lines 3–17. Power-of-two
array sizes and bit-vector lengths are determined by generic constants, so e.g.
the register array reg contains 22 = 4 registers, each containing 8 bits.
On lines 18-59, finite-state-machine behaviour is described by init and next
functions. In Rust, if the last statement in a function is not terminated by a
semicolon, it is the return value. Both functions return newly constructed states.
The init function returns a state with the program counter set to zero and
other fields uninitialized (having arbitrary values). The function next reads
current instruction from read-only program memory, increments the program
counter, and decides on the action to perform depending on the instruction
value. The bitmask_switch macro is designed to have the same format
as conventional instruction set descriptions, filtering on zeros and ones and
creating new variables for letters.



1 fn main() {
2 let toy_program = [
3 // (0) set r0 to zero
4 Bitvector::new(0b0100_0000_0000),
5 // (1) set r1 to one
6 Bitvector::new(0b0101_0000_0001),
7 // (2) set r2 to zero
8 Bitvector::new(0b0110_0000_0000),
9 // --- main loop ---

10 // (3) store r1 content to data location 0
11 Bitvector::new(0b1100_0000_0000),
12 // (4) store r2 content to data location 1
13 Bitvector::new(0b1100_0000_0001),
14 // (5) read input location 0 to r3
15 Bitvector::new(0b0011_0100_0000),
16 // (6) jump to (3) if r3 bit 0 is set
17 Bitvector::new(0b0011_1000_0011),
18 // (7) increment r2
19 Bitvector::new(0b0010_0000_1001),
20 // (8) store r2 content to data location 1
21 Bitvector::new(0b1110_0000_0001),
22 // (9) jump to (3)
23 Bitvector::new(0b0001_1000_0011),
24 ];
25 let mut progmem = BitvectorArray::new_filled(
26 Bitvector::new(0));
27 for (index, instruction) in toy_program
28 .into_iter().enumerate() {
29 progmem[Bitvector::new(index as u64)] = instruction;
30 }
31 let system = machine_module::System { progmem };
32 machine_check::run(system);
33 }

Fig. 4. Example of construction of a machine-code system based on the
simplified RISC processor from Figure 3. Here, the program memory values
are hardcoded, but arbitrary Rust code can be used to construct the system. The
constructed system is handed off to machine-check, which verifies properties
determined by command-line arguments against the system.
Considering data locations 0 and 1 to be memory-mapped peripherals
(e.g. general-purpose outputs), the output behaviour of the program is that
the locations are set to zero on initialization, after which the data location 1 is
incremented each time bit 0 of input location 0 is read as set.

Finally, more advanced types of reasoning could be added
to machine-check, so that even more complex systems and
specifications can be verified in reasonable time. Fortunately,
due to the strict separation between the descriptions and speci-
fications on one side and the verification internals on the other,
such internal improvements can be made without breaking the
description and specification code.

VI. CONCLUSION

In the paper, the concept of formal verification was intro-
duced, with an observation that there are no tools publicly avail-
able for formal verification of machine-code systems despite the
need for verification of properties that are hard or impossible
to verify by source-code or hardware verification. Previous
work on machine-code formal verification was summarized and
the problems of previous approaches were discussed. A free,
publicly available tool for verification of machine-code systems
machine-check was introduced. The shortcomings of previous
approaches are resolved by a novel combination of abstraction
refinement and compile-time translation of simulation descrip-
tions. The descriptions were studied in detail using an example

of a simplified RISC processor. Finally, future work required
to make the tool usable for common use was discussed.
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