Formal Verification of Machine-Code Systems
by Translation of Simulable Descriptions

Jan Onderka

Czech Technical University in Prague
Faculty of Information Technology

2024-06-11

Jan Onderka Verification of Machine-Code Systems 2024-06-11 1/12



Digital systems executing machine-code programs

1908
INTEL® CORE™ §5-250%
SR8 3. 386HZ

MALAY

L1529 @

.

LPCI114F
202", |
047,127

2SD11061BY

Jan Onderka Verification of Machine-Code Systems 2024-06-11 2/12



Example: Source code vs machine code

Source code for ATmega328P microcontroller

1 #include <avr/io.h>

2 int main(void) {

3 DDRC = 0x07;

4 while (1) {

5 uint8_.t readval = PIND;

6 uint8_t writeval = “readval;
7 PORTC = writeval & 0x07;

8 1}

93

is compiled into machine code

0C9434000C943E000C943E000C943E00
0C943E000C943E000C943E000C943E00
0C943E000C943E000C943E000C943E00
0C943E000C943E000C943E000C943E00
0C943E000C943E000C943E000C943E00
0C943E000C943E000C943E000C943E00
0C943E000C943E0011241FBECFEFDSEOQ
DEBFCDBF0E9440000C9447000C940000
87E087B989B18095877088B9FBCFF894
FFCF

which is loaded into the microcontroller and executed after each reset

Jan Onderka Verification of Machine-Code Systems 2024-06-11 3/12



Verification

@ Informal x formal

» Informal verification can find bugs

» Formal verification guarantees correctness
o Digital systems

» Hardware
» Software

* Machine code
* Source code
@ Many tools for hardware and source-code verification, none publicly
available for machine-code verification
@ | have developed the formal verification tool machine-check

» the first publicly available, free and open-source tool that can formally
verify machine-code systems
» can also verify other digital systems

Jan Onderka Verification of Machine-Code Systems 2024-06-11 4/12



What can we verify in machine-code systems that we
cannot in source-code systems?

@ Proper use of peripherals
» Are you communicating correctly with your temperature sensor?

Mitigation of single point of failure in compilation
» CompCert compiler: dozens of bugfixes

Real-time systems: best-case and worst-case timings
» Audio processing takes too long = your Hi-Fi audio drops out

Detection of triggering known hardware bugs

Jan Onderka Verification of Machine-Code Systems 2024-06-11 5/12



Why was formal machine-code verification not available?

@ Some abortive research attempts at machine-code verification
@ Two main problems that interact with each other:

» Standard formal verification problem: many system states
» Unique to machine-code systems: how to describe processors

processor machine code
combine
| system specification

. verification
result

Jan Onderka Verification of Machine-Code Systems 2024-06-11 6/12



How machine-check solves the problems

@ Main state-of-the-art technique for tackling many system states:
model checking with abstraction refinement
@ We can write a simulator of the processor if we have the
documentation
» Practically infeasible to introduce abstraction refinement manually

@ Novel approach: describe the processor as a simulable finite-state
machine and use meta-programming to introduce abstraction
refinement

> i.e. take the simulable processor description code and transform it to
its abstract and refinement analogues

@ Machine-check uses macros in the Rust programming language to
perform the meta-programming

@ Write the description for simulation, get formal verification
capability for free

Jan Onderka Verification of Machine-Code Systems 2024-06-11 7/12



Simplified RISC processor example 1/3: data structures

@ Program counter, four 8-bit registers, 256 bytes of data memory,
128 bytes of program memory

1 #[machine_check :: machine_description]

2 mod machine_module {

3 pub struct Input {

4 gpio_read: BitvectorArray <4, 8>,

5 uninit_reg: BitvectorArray <2, 8>,

6 uninit_data: BitvectorArray <8, 8>,
!

8 impl ::machine_check::Input for Input {}
9 pub struct State {

10 pc: Bitvector <7>,

11 reg: BitvectorArray <2, 8>,

12 data: BitvectorArray <8, 8>,

13 }

14 impl ::machine_check::State for State {}
15 pub struct System {

16 pub progmem: BitvectorArray <7, 12>,

17

18 (...)

19 }

Jan Onderka Verification of Machine-Code Systems 2024-06-11 8/12



Simplified RISC processor example 2/3: init state

@ Initialize program counter to 0, registers and data cells are

uninitialized
1 fn init(&self, input: &lnput) —> State {
2 State {
3 pc: Bitvector::<7>::new(0),
4 reg: Clone::clone(&input.uninit_reg),
5 data: Clone::clone(&input.uninit_data),
6 }
7}

Jan Onderka Verification of Machine-Code Systems 2024-06-11 9/12



Simplified RISC processor example 3/3: next state

@ Fetch instruction, increment program counter, execute

OO ~NOOOTHS WN -

le
le
le
le

fn next(&self , state: &State, input: &lInput) —> State {

t instruction = self.progmem[state.pc];

t mut pc = state.pc + Bitvector::<7>::new(1);
t mut reg = Clone::clone(&state.reg);

t mut data = Clone::clone(&state.data);

::machine_check:: bitmask_switch!(instruction {

1)
St

"00dd_00—_aabb” => { // add
reg[d] = reg[a] + reg[b];

"00dd_01—_gggg” => { // read input
reg[d] = input.gpio_read[g];

}
"00rr_1kkk_kkkk” = { // jump if bit 0 is set
if reg[r] & Bitvector::<8>::new(1)
— Bitvector::<8>::new(1l) {
pc = k;

} (...) // other instructions skipped for conciseness

ate { pc, reg, data }

Jan Onderka Verification of Machine-Code Systems 2024-06-11

10/12



Putting it together in machine-check

@ The processor description is compiled together with verification
algorithms, translation to verification equivalents occurs during
compilation

@ Typically, the executable receives the machine code file and
a Computation Tree Logic specification from the command line

@ No need for the description writer to know about advanced
formal verification techniques

processor
description
translate
and compile
verifier machine code specification

executable
execute with ¢
arguments S

« verification

! result

Jan Onderka Verification of Machine-Code Systems 2024-06-11 11/12



Conclusion

@ Novel technique of translation of simulable descriptions resolves
previous problems with formal machine-code verification
o Already implemented in my Rust tool machine-check!
» Not stable and ready for serious use yet
> Initial stable version planned later this year
> Finishing my dissertation, further development subject to funding
@ For truly safe and secure systems, we should aim to close the blind
spot in machine-code verification

The version discussed here is available at
https://crates.io/crates/machine-check/0.2.0, development on GitHub

Jan Onderka Verification of Machine-Code Systems 2024-06-11 12/12


https://crates.io/crates/machine-check/0.2.0

