
Formal Verification of Machine-Code Systems
by Translation of Simulable Descriptions

Jan Onderka

Czech Technical University in Prague
Faculty of Information Technology

2024-06-11

Jan Onderka Verification of Machine-Code Systems 2024-06-11 1 / 12

Digital systems executing machine-code programs

Jan Onderka Verification of Machine-Code Systems 2024-06-11 2 / 12

Example: Source code vs machine code

Source code for ATmega328P microcontroller
1 #inc l u d e <av r / i o . h>
2 i n t main (vo id) {
3 DDRC = 0x07 ;
4 wh i l e (1) {
5 u i n t 8 t r e a d v a l = PIND ;
6 u i n t 8 t w r i t e v a l = ˜ r e a d v a l ;
7 PORTC = w r i t e v a l & 0x07 ;
8 }
9 }

is compiled into machine code

0C9434000C943E000C943E000C943E00
0C943E000C943E000C943E000C943E00
0C943E000C943E000C943E000C943E00
0C943E000C943E000C943E000C943E00
0C943E000C943E000C943E000C943E00
0C943E000C943E000C943E000C943E00
0C943E000C943E0011241FBECFEFD8E0
DEBFCDBF0E9440000C9447000C940000
87E087B989B18095877088B9FBCFF894
FFCF

which is loaded into the microcontroller and executed after each reset

Jan Onderka Verification of Machine-Code Systems 2024-06-11 3 / 12

Verification

Informal × formal
▶ Informal verification can find bugs
▶ Formal verification guarantees correctness

Digital systems
▶ Hardware
▶ Software

⋆ Machine code
⋆ Source code

Many tools for hardware and source-code verification, none publicly
available for machine-code verification

I have developed the formal verification tool machine-check
▶ the first publicly available, free and open-source tool that can formally

verify machine-code systems
▶ can also verify other digital systems

Jan Onderka Verification of Machine-Code Systems 2024-06-11 4 / 12

What can we verify in machine-code systems that we
cannot in source-code systems?

Proper use of peripherals
▶ Are you communicating correctly with your temperature sensor?

Mitigation of single point of failure in compilation
▶ CompCert compiler: dozens of bugfixes

Real-time systems: best-case and worst-case timings
▶ Audio processing takes too long =⇒ your Hi-Fi audio drops out

Detection of triggering known hardware bugs

. . .

Jan Onderka Verification of Machine-Code Systems 2024-06-11 5 / 12

Why was formal machine-code verification not available?

Some abortive research attempts at machine-code verification

Two main problems that interact with each other:
▶ Standard formal verification problem: many system states
▶ Unique to machine-code systems: how to describe processors

processor machine code

system specification

verification
result

combine

verify

Jan Onderka Verification of Machine-Code Systems 2024-06-11 6 / 12

How machine-check solves the problems

Main state-of-the-art technique for tackling many system states:
model checking with abstraction refinement

We can write a simulator of the processor if we have the
documentation

▶ Practically infeasible to introduce abstraction refinement manually

Novel approach: describe the processor as a simulable finite-state
machine and use meta-programming to introduce abstraction
refinement

▶ i.e. take the simulable processor description code and transform it to
its abstract and refinement analogues

Machine-check uses macros in the Rust programming language to
perform the meta-programming

Write the description for simulation, get formal verification
capability for free

Jan Onderka Verification of Machine-Code Systems 2024-06-11 7 / 12

Simplified RISC processor example 1/3: data structures

Program counter, four 8-bit registers, 256 bytes of data memory,
128 bytes of program memory

1 #[mach ine check : : ma c h i n e d e s c r i p t i o n]
2 mod machine module {
3 pub s t r u c t I npu t {
4 gp i o r e a d : B i t v e c t o rA r r a y <4, 8>,
5 u n i n i t r e g : B i t v e c t o rA r r a y <2, 8>,
6 u n i n i t d a t a : B i t v e c t o rA r r a y <8, 8>,
7 }
8 imp l : : mach ine check : : I npu t f o r I npu t {}
9 pub s t r u c t Sta t e {

10 pc : B i t v e c t o r <7>,
11 r eg : B i t v e c t o rA r r a y <2, 8>,
12 data : B i t v e c t o rA r r a y <8, 8>,
13 }
14 imp l : : mach ine check : : S t a t e f o r Sta t e {}
15 pub s t r u c t System {
16 pub progmem : B i t v e c t o rA r r a y <7, 12> ,
17 }
18 (. . .)
19 }

Jan Onderka Verification of Machine-Code Systems 2024-06-11 8 / 12

Simplified RISC processor example 2/3: init state

Initialize program counter to 0, registers and data cells are
uninitialized

1 fn i n i t (& s e l f , i npu t : &Inpu t) −> Sta t e {
2 Sta t e {
3 pc : B i t v e c t o r : :<7> : : new (0) ,
4 r eg : Clone : : c l o n e (& i npu t . u n i n i t r e g) ,
5 data : Clone : : c l o n e (& i npu t . u n i n i t d a t a) ,
6 }
7 }

Jan Onderka Verification of Machine-Code Systems 2024-06-11 9 / 12

Simplified RISC processor example 3/3: next state
Fetch instruction, increment program counter, execute

1 fn next (& s e l f , s t a t e : &State , i npu t : &Inpu t) −> Sta t e {
2 l e t i n s t r u c t i o n = s e l f . progmem [s t a t e . pc] ;
3 l e t mut pc = s t a t e . pc + B i t v e c t o r : :<7> : : new (1) ;
4 l e t mut r eg = Clone : : c l o n e (& s t a t e . r eg) ;
5 l e t mut data = Clone : : c l o n e (& s t a t e . data) ;
6 : : mach ine check : : b i tma s k sw i t c h ! (i n s t r u c t i o n {
7 ”00 dd 00−− aabb ” => { // add
8 reg [d] = reg [a] + reg [b] ;
9 }

10 ”00 dd 01−− gggg ” => { // read i npu t
11 reg [d] = i npu t . g p i o r e a d [g] ;
12 }
13 ”00 r r 1 k kk kkkk ” => { // jump i f b i t 0 i s s e t
14 i f r eg [r] & B i t v e c t o r : :<8> : : new (1)
15 == B i t v e c t o r : :<8> : : new (1) {
16 pc = k ;
17 } ;
18 } (. . .) // o th e r i n s t r u c t i o n s s k i pped f o r c o n c i s e n e s s
19 }) ;
20 S ta t e { pc , reg , data }
21 }

Jan Onderka Verification of Machine-Code Systems 2024-06-11 10 / 12

Putting it together in machine-check

The processor description is compiled together with verification
algorithms, translation to verification equivalents occurs during
compilation

Typically, the executable receives the machine code file and
a Computation Tree Logic specification from the command line

No need for the description writer to know about advanced
formal verification techniques

processor
description

machine code specification

verification
result

verifier
executable

translate
and compile

execute with
arguments

Jan Onderka Verification of Machine-Code Systems 2024-06-11 11 / 12

Conclusion

Novel technique of translation of simulable descriptions resolves
previous problems with formal machine-code verification

Already implemented in my Rust tool machine-check1

▶ Not stable and ready for serious use yet
▶ Initial stable version planned later this year
▶ Finishing my dissertation, further development subject to funding

For truly safe and secure systems, we should aim to close the blind
spot in machine-code verification

1The version discussed here is available at
https://crates.io/crates/machine-check/0.2.0, development on GitHub

Jan Onderka Verification of Machine-Code Systems 2024-06-11 12 / 12

https://crates.io/crates/machine-check/0.2.0

