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Abstract. Abstraction is one of the most important approaches for re-
ducing the number of states in formal verification. An important abstrac-
tion technique is the usage of three-valued logic, extensible to bit-vectors.
The best abstract bit-vector results for movement and logical operations
can be computed quickly. However, for widely-used arithmetic opera-
tions, efficient algorithms for computation of the best possible output
have not been known up to now.

In this paper, we present new efficient polynomial-time algorithms for ab-
stract addition and multiplication with three-valued bit-vector inputs.
These algorithms produce the best possible three-valued bit-vector out-
put and remain fast even with 32-bit inputs.

To obtain the algorithms, we devise a novel modular extreme-finding
technique via reformulation of the problem using pseudo-Boolean mod-
ular inequalities. Using the introduced technique, we construct an al-
gorithm for abstract addition that computes its result in linear time,
as well as a worst-case quadratic-time algorithm for abstract multipli-
cation. Finally, we experimentally evaluate the performance of the algo-
rithms, confirming their practical efficiency.

Keywords: Formal verification - Three-valued abstraction - Computer arith-
metics - Addition and multiplication - Pseudo-Boolean modular inequality

1 Introduction

In traditional microprocessors, the core operations are bitwise logical operations
and fixed-point wrap-around arithmetic. Behaviour of programs in machine code
can be formally verified by model checking, enumerating all possible system
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states and transitions (state space) and then verifying their properties. Unfor-
tunately, naive exhaustive enumeration of states quickly leads to prohibitively
large state spaces (state space explosion), making verification infeasible.

State space explosion may be mitigated by a variety of techniques. One
of them is abstraction, where a more efficient state space structure preserving
certain properties of the original is constructed [3, p. 17]. Typically, the formal
verification requirement is that it should be impossible to prove anything not
provable in the original state space (soundness for true), while allowing overap-
proximation, leading to the possibility of a false counterexample.

For machine-code model checking, three-valued abstract representation of bits
was introduced in [7] where each abstract bit can have value “zero”, “one”,
or “perhaps one, perhaps zero” (unknown). Using this abstraction, bit and bit-
vector movement operations may be performed directly on abstract bits. Each
movement operation produces a single abstract result, avoiding state space explo-
sion. The caveat is that overapproximation is incurred as relationships between
unknown values are lost.

Three-valued representation was further augmented in [11] via bitwise logic
operations (AND, OR, NOT...) with a single abstract result, further reducing
state space explosion severity. However, other operations still required instantia-
tion of the unknown values to enumerate all concrete input possibilities, treating
each arising output possibility as distinct. This would lead not only to output
computation time increasing exponentially based on the number of unknown
bits, but also to potential creation of multiple new states and the possibility
of severe state space explosion. For example, an operation with two 32-bit in-
puts and a 32-bit output could require up to 264 concrete operation computations
and could produce up to 232 new states.

The necessity of instantiation when encountering arithmetic operations had
severely reduced usefulness of a microcontroller machine-code model checker with
three-valued abstraction developed by one of the authors [8]. This prompted our
research in performing arbitrary operations without instantiation, with emphasis
on fast computation of results of arithmetic operations.

1.1 Owur Contribution

In this paper, we formulate the forward operation problem, where an arbitrary
operation performed on three-valued abstract bit-vector inputs results in a sin-
gle three-valued abstract bit-vector output which preserves soundness of model
checking. While the best possible output can always be found in worst-case time
exponential in the number of three-valued input bits, this is slow for 8-bit binary
operations and infeasible for higher powers of two.

To aid with construction of polynomial-time worst-case algorithms, we devise
a novel modular extreme-search technique. Using this technique, we find a linear-
time algorithm for abstract addition and a worst-case quadratic-time algorithm
for abstract multiplication.



Our results will allow model checkers that use the three-valued abstraction
technique to compute the state space faster and to manage its size by only per-
forming instantiation when necessary, reducing the risk of state space explosion.

2 Related Work

Many-valued logics have been extensively studied on their own, including Kleene
logic [6] used for three-valued model checking [11]. In [10], three-valued logic was
used for static program analysis of 8-bit microcontroller programs. Binary deci-
sion diagrams (BDDs) were used to compress input-output relationships for ar-
bitrary abstract operations. This resulted in high generation times and storage
usage, making the technique infeasible to use with 16-bit or 32-bit operands.
These restrictions are not present in our approach where we produce the ab-
stract operation results purely algorithmically, but precomputation may still be
useful for abstract operations with no known worst-case polynomial-time algo-
rithms.

In addition to machine-code analysis and verification, multivalued logics are
also widely used for register-transfer level digital logic simulation. The IEEE 1164
standard [5] introduces nine logic values, out of which ‘0’ (zero), ‘1’ (one),
and ‘X’ (unknown) directly correspond to three-valued abstraction. For easy
differentiation between concrete values and abstract values, we will use the
IEEE 1164 notation in this paper, using single quotes to represent an abstract
bit as well as double quotes to represent an abstract bit-vector (tuple of abstract
bits), e.g. “0X1” means (‘0’, ‘X’, ‘1’). While we primarily consider microprocessor
machine-code model checking as our use case, we note that the presented algo-
rithms also might be useful for simulation, automated test pattern generation,
and formal verification of digital circuits containing adders and multipliers.

In [14], it was proposed that instantiation may be performed based only
on interesting variables. For example, if a status flag “zero” is of interest, a tuple
of values “XX” from which the flag is computed should be replaced by the possi-
bilities {“00”, “1X”, “X1”}. This leads to lesser state space explosion compared
to naive instantiation, but is not relevant for our discussion as we discuss avoid-
ing instantiation entirely during operation resolution.

In the paper, we define certain pseudo-Boolean functions and search for their
global extremes. This is also called pseudo-Boolean optimization [2]. Problems
in this field are often NP-hard. However, pseudo-Boolean functions for addition
and multiplication that we will use in this paper have special forms that will allow
us to resolve the corresponding problems in polynomial time without having
to resort to advanced pseudo-Boolean optimization techniques.

3 Basic Definitions

Let us consider a binary concrete operation which produces a single M-bit output
for each combination of two N-bit operands, i.e. 7 : BY x BY — BM. We define



the forward operation problem as the problem of producing a single abstract bit-
vector output given supplied abstract inputs, preserving soundness. The output
is not pre-restricted (the operation computation moves only forward). To pre-
serve soundness, the abstract output must contain all possible concrete outputs
that would be generated by first performing instantiation, receiving a set of con-
crete possibilities, and then performing the operation on each possibility.

To easily formalize this requirement, we first formalize three-valued abstrac-
tion using sets. Each three-valued abstract bit value (‘0’,1’,‘X’) identifies all
possible values the corresponding concrete bit can take. We define the abstract
bit as a subset of B = {0,1} and the abstract bit values as

0 L0y, {1}, x 0,1} (1)

This formalization corresponds exactly to the meaning of ‘X’ as “possibly 0,
possibly 17. Even though @ is also a subset of B, it is never assigned to any
abstract bit as there is always at least a single output possibility.

If an abstract bit is either ‘0’ or ‘1’, we consider it known; if it is ‘X’, we
consider it unknown. For ease of representation in equations, we also introduce
an alternative math-style notation X L {0,1}.

Next, we define abstract bit-vectors as tuples of abstract bits. For clarity, we
use hat symbols to denote abstract bit-vectors and abstract operations. We use
zero-based indexing for simplicity of representation and correspondence to typ-
ical implementations, i.e. Gg means the lowest bit of abstract bit-vector a. We
denote slices of the bit-vectors by indexing via two dots between endpoints, i.e.
ag..o means the three lowest bits of abstract bit-vector a. In case the slice reaches
higher than the most significant bit of an abstract bit-vector, we assume it to be
padded with ‘0’, consistent with interpretation as an unsigned number.

3.1 Abstract Bit Encodings

In implementations of algorithms, a single abstract bit may be represented
by various encodings. First, we formalize a zeros-ones encoding of abstract bit a;
using concrete bits af € B, a} € B via

ad =1 <= 0€ay, a =

;=1 <= 1leca,, (2)
which straightforwardly extends to bit-vectors a”, a'. Assuming a has A € Ny
bits, a € (QB)A, while a® € B4, o' € B4, i.e. they are concrete bit-vectors.

We also formalize a mask-value encoding: the mask bit a}* = 1 exactly when
the abstract bit is unknown. When the abstract bit is known, the value bit aY
corresponds to the abstract value (0 for ‘0’, 1 for ‘1%), as previously used in [11].
For simplicity, we further require a} = 0 if ;" = 1. We formalize the encoding
of abstract bit a; using concrete bits a;" € B, ay € B via

af‘zl<:>0€di/\1€di,a‘.’:1<:>0¢&i/\1€di, (3)

(2



which, again, straightforwardly extends to bit-vectors a™ € B4 and ¥ € BA.
We note that the encodings can be quickly converted via

=1 <= a"=1Val =0, a;

K2

a0
Z
A" =1 <= a)=1Nal=1,a) =1 < a

K3

We note that when interpreting each concrete possibility in abstract bit-vector
@ as an unsigned binary number, a¥ corresponds to the minimum, while a!
corresponds to the maximum. For conciseness and intuitiveness, we will not
explicitly note the conversions in the presented algorithms. Furthermore, where
usage of arbitrary encoding is possible, we will write the hat-notated abstract
bit-vector, e.g. a.

3.2 Abstract Transformers

We borrow the notions defined in this subsection from abstract interpretation
[4,12], adapting them for the purposes of this paper.

The set of concrete bit-vector possibilities given by a tuple containing A
abstract bits, a € (2%)4, is given by a concretization function v : (28)4 — 2B,

@) Y {aeBA | Vie{0,...,A—1}.a; € a;}. (5)

Conversely, the transformation of a set of bit-vector possibilities C' € 2B")
to a single abstract bit-vector a € (2B)4 is determined by an abstraction func-
tion o : 2" (28)4 which, to prevent underapproximation and to ensure
soundness of model checking, must fulfill C' C vy(a(C)).

An abstract operation 7 : (28)N x (2B)N — (2B)M corresponding to concrete
operation r : BY x BY — BM is an approzimate abstract transformer if it
overapproximates r, that is,

va e (2)N,b e (22)V . {r(a.b) |a € 7(a),b € v(B)} S H(#(a,b)).  (6)

The number of concrete possibilities |y(a(C))| should be minimized to prevent
unnecessary overapproximation. For three-valued bit-vectors, the best abstrac-
tion function aP*t is uniquely given by

Vie{0,...,A—1}. (")) ¥ {c; e B|ce C. (7)

By using aP°t to perform the abstraction on the minimal set of concrete results
from Equation 6, we obtain the best abstract transformer for arbitrary con-
crete operation r, i.e. an approximate abstract transformer resulting in the least
amount of overapproximation, uniquely given as

4 (a,5) = 0P ({ri(a,b) | a € 1(a),b € 4(B)) (®)

We note that when no input abstract bit is (), there is at least one concrete result
r(a,b) and no output abstract bit can be (). Thus, three-valued representation is
truly sufficient.



3.3 Algorithm Complexity Considerations

We will assume that the presented algorithms are implemented on a general-
purpose processor that operates on binary machine words and can compute
bitwise operations, bit shifts, addition and subtraction in constant time. Every
bit-vector used fits in a machine word. This is a reasonable assumption, as it is
likely that the processor used for verification will have machine word size equal to
or greater than the processor that runs the program under consideration.

We also assume that the ratio of M to N is bounded, allowing us to express
the presented algorithm time complexities using only N. Memory complexity is
not an issue as the presented algorithms use only a fixed amount of temporary
variables in addition to the inputs and outputs.

3.4 Naive Universal Abstract Algorithm

Equatlon 8 immediately suggests a nalve algorithm for computing #P** for any
given a, b: enumerating all a,b € 2(B7) | filtering out the ones that do not satisfy
a € (@) A be (), and marking the results of r(a,b), which is easily done
in the zeros-ones encoding. This naive algorithm has a running time of ©(22V).
Average-case computation time can be improved by only enumerating un-
known input bits, but worst-case time is still exponential. Even for 8-bit binary
operations, the worst-case input combination (all bits unknown) would require
216 concrete operation computations. For 32-bit binary operations, it would re-
quire 264 computations, which is infeasible. Finding worst-case polynomial-time
algorithms for common operations is therefore of significant interest.

4 Formal Problem Statement

Theorem 1. The best abstract transformer of abstract bit-vector addition is
computable in linear time.

Theorem 2. The best abstract transformer of abstract bit-vector multiplication
is computable in worst-case quadratic time.

In Section 5, we will introduce a novel modular extreme-finding technique which
will will use a basis for finding fast best abstract transformer algorithms. Using
this technique, we will prove Theorems 1 and 2 by constructing corresponding
algorithms in Sections 6 and 7, respectively. We will experimentally evaluate
the presented algorithms to demonstrate their practical efficiency in Section 8.

5 Modular Extreme-Finding Technique

The concrete operation function r may be replaced by a pseudo-Boolean function
h: BN x BY — Ny where the output of r is the output of h written in base 2.
Surely, that fulfills

Va e BN b e BV, Vk € {0,...,M — 1} .

re(a,b) =1 <= (h(a,b) mod 2~T1) > 2%, ©)



The best abstract transformer definition in Equation 8 is then equivalent to

Vke{0,...,M —1}.
(0 € ™" = Ja e ~y(a),be~(b). (h(a,b) mod 2°71) < 28y A (10)
(1€ «— Jae~(a),be~(b). (hla,b) mod 2°+1) > 2K),

The forward operation problem is therefore transformed into a problem of solving
certain modular inequalities, which is possible in polynomial time for certain
operations. We will later show that these include addition and multiplication.

If the inequalities were not modular, it would suffice to find the global min-
imum and maximum (extremes) of h. Furthermore, the modular inequalities
in Equation 10 can be thought of as alternating intervals of length 2*. Intu-
itively, if it was possible to move from the global minimum to the global max-
imum in steps of at most 2* by using different values of a € a,b € b in h(a,b),
it would suffice to find the global extremes and determine whether they are
in the same 2% interval. If they were, only one of the modular inequalities would
be satisfied, resulting in known ry (either ‘0’ or ‘1’). If they were not, each
modular inequality would be satisfied by some a, b, resulting in r, = X.

We will now formally prove that our reasoning for this modular extreme-
finding method is indeed correct.

Lemma 1. Consider a sequence of integers t = (to,t1,...,tr—1) that fulfills
Vn e [0,T —2] . [thyr — to| < 2F. (11)
Then,

Ju € [mint, maxt] . (v mod 2"*1) < 2% —

3n € [0,T —1] . (t, mod 251y < 2F, (12)
Proof. As the sequence t is a subset of range [min¢, maxt], the backward di-
rection is trivial. The forward direction trivially holds if v is contained in ¢.
If it is not, it is definitely contained in some range (v—,v™"), where v, vT are
successive values in the sequence t. Since [vt — v~ < 2%, (v~ mod 2F+1) < 2k,
and (vt mod 2¥+1) < 2% the value v in range (v, v") definitely must also fulfill
(v mod 2F+1) < 2k, O

Theorem 3. Consider a pseudo-Boolean function f : BY x BN — Z, two inputs
a,be (2B)N, and a sequence p = (po,p1,...,pp_1) where each element is a pair

(a,b) € (v(a), (b)), that fulfill

Vn €[0,P =2 . [f(Pns1) — fpn)] < 2%,
f(pO) = min f(a7b)7

acv(a)
bey(h) (13)

f(pp—1) = max f(a,b).

acvy(a)
bey(b)



Then,

VC eZ.(3a e y(a),be~b) . ((flab)+ C)mod 28F1) < 2 14
(

= 3Inec0,P—1].((f(pn) + C) mod 2F+1) < 2F),

Proof. Since each element of p is a pair (a,b) € (y(a), (b)), the backward direc-
tion is trivial. For the forward direction, use Lemma 1 to convert the sequence
(f(pn) + C)}Zy to range [f(po) + C, f(pp—1) + C] and rewrite the forward di-
rection as

VC eZ. (Jae~(a),be~b) . ((fla,b)+C)mod 28T < 28 —

v e | min (f(a,b)+C), max (f(a,b) +C)| . (v mod 28*1) < 2F). (15)

a€v(a) a€vy(a)
bev(b) bev(b)
The implication clearly holds, completing the proof. a

While Theorem 3 forms a basis for the modular extreme-finding method,
there are two problems. First, finding global extremes of a pseudo-Boolean func-
tion is not generally trivial. Second, the step condition, that is, the absence
of a step longer than 2* in h, must be ensured. Otherwise, one of the inequality
intervals could be “jumped over”. For non-trivial operators, steps longer than 2%
surely are present in h for some k. However, instead of h, it is possible to use
a tuple of functions (hy)n " where each one fulfills Equation 10 for a given
k exactly when h does. This is definitely true if each hj is congruent with h
modulo 2K+1,

Fast best abstract transformer algorithms can now be formed based on find-
ing extremes of hy, provided that hj changes by at most 2 when exactly one
bit of input changes its value, which implies that a sequence p with properties
required by Theorem 3 exists. For ease of expression of the algorithms, we de-
fine a function which discards bits of a number x below bit &k (or, equivalently,
performs integer division by 2*),

Gl(@) = |55 - (16)

For conciseness, given inputs a € (28),b € (2B)N, we also define

in def . def
hmln — h , b , hmax Py h , b ,
k aren’yl(rtl:l) k(a ) k aren’?(i;) k(a ) (17)
bey(b) bey(b)

Equation 10 then can be reformulated as follows: if (g (R®) # (i (h2X), both
inequalities are definitely fulfilled (as each one must be fulfilled by some element
of the sequence) and output bit k is unknown. Otherwise, only one inequality
is fulfilled, the output bit &k is known and its value corresponds to Ck(h‘,fi“) mod 2.
This forms the basis of Algorithm 1, which provides a general blueprint for fast
abstract algorithms. Proper extreme-finding for the considered operation must



be added to the algorithm, denoted by (... ) in the algorithm pseudocode. We will
devise extreme-finding for fast abstract addition and multiplication operations
in the rest of the paper.

Algorithm 1 Modular extreme-finding abstract algorithm blueprint

1: function MODULAR_ALGORITHM_BLUEPRINT(@, 13)

2 for k € {0,...,.M — 1} do

3 R (L)) > Compute extremes of hy
4: hpex —(...)

5 GAP) # G(h™) then

6 cp — X > Set result bit unknown
7 else

8 e <« 0, ¢}, < Cx(hm) mod 2 > Set value
9 end if
10: end for
11: return ¢

12: end function

6 Fast Abstract Addition

To express fast abstract addition using the modular extreme-finding technique,
we first define a function expressing the unsigned value of a concrete bit-vector a
with an arbitrary number of bits A,

A—1
P(a) €Y 2a;. (18)
i=0
Pseudo-Boolean addition is then defined simply as
ht(a,b) ¥ B(a) + O(b). (19)
To fulfill the step condition, we define
hz(a, b) = @(aouk) + @(bo;c) (20)

This is congruent with A+t modulo 2¥*!. The step condition is trivially fulfilled
for every function b} in (h:)kM: ', as changing the value of a single bit of a or
b changes the result of hz by at most 2¥. We note that this is due to A* having
a special form where only single-bit summands with power-of-2 coefficients are
present. Finding the global extremes is trivial as each summand only contains

a single abstract bit. Recalling Subsection 3.1, the extremes can be obtained as

hE™ — D(ay 1) + P(OY k),

+,max 1 1 (21)
hy, — D(ag, i) + P(bo..x)-



The best abstract transformer for addition is obtained by combining Equation 21
with Algorithm 1. Time complexity is trivially ©(N), proving Theorem 1. Similar
reasoning can be used to obtain fast best abstract transformers for subtraction
and general summation, only changing computation of hgli“ and hjx.
For further understanding, we will show how fast abstract addition behaves

for “X0” + “117:

E=0:4" 4 “1",1=¢0+1)=¢0+1)=1—ro="1,

E=1:“X0" + “11”7, 1 =G(0+3) #G(2+3) =2 —r =X,

kE=2:4X0" + “0117, 0=CG(0+3) #L2+3)=1—r =X,

k>2: CG(hi™™) = G(h™™) =0 = ry, = 0.

(22)

For M = 2, the result is “XX1”. For M > 2, the result is padded by ‘0’ to the left,
preserving the unsigned value of the output. For M < 2, the addition is modular.
This fully corresponds to behaviour of concrete binary addition.

7 Fast Abstract Multiplication

Multiplication is typically implemented on microprocessors with three different
input signedness combinations: unsigned X unsigned, signed X unsigned, and
signed x signed, with signed variables using two’s complement encoding. It is
a well-known fact that the signed-unsigned and signed multiplication can be con-
verted to unsigned multiplication by extending the signed multiplicand widths
to product width using an arithmetic shift right. This could pose problems when
the leading significant bit is ‘X’, but it can be split beforehand into two cases,
‘0’ and ‘1’. This allows us to only consider unsigned multiplication in this section,
signed multiplication only incurring a constant-time slowdown.

7.1 Obtaining a Best Abstract Transformer

Abstract multiplication could be resolved similarly to abstract addition by rewrit-
ing multiplication as addition of a sequence of shifted summands (long multipli-
cation) and performing fast abstract summation. However, this does not result
in a best abstract transformer. The shortest counterexample is “11” - “X1”. Here,
the unknown bit by is added twice before influencing 7o, once as a summand
in the computation of o and once as a carryover from ry:

2% @) @H @9

1 1
by 1

(b1) (b1) bl 1
by 1

by 2b1 1406, 1

In fast abstract summation, the summand b is treated as distinct for each output
bit computation, resulting in unnecessary overapproximation of multiplication.



Instead, to obtain a fast best abstract transformer for multiplication, we
apply the modular extreme-finding technique to multiplication itself, without
intermediate conversion to summation. Fulfilling the maximum 2¥ step condition
is not as easy as previously. The multiplication output function hA* is defined as

N—1 N—
h*(a,0) < (a) - S(b) = > 21+ a;b;. (23)
= =0

—
—

<

One could try to use congruences to remove some summands from hj while
keeping all remaining summands positive. This would result in

-
hi(a,b) = 279 ;b (24)

Changing a single bit a; would change the result by Z;:é 2i+i bj. This sums
to at most 2°*1 — 1 and thus does not always fulfill the maximum 2" step con-
dition. However, the sign of the summand 2*a;b,_; can be flipped due to con-
gruence modulo 2°t1, after which the change of result from a single bit flip is
always in the interval [—2%, 2% — 1]. Therefore, to fulfill the maximum 2" step

condition, we define hj, : BY x BN — Z as

k k—1 k—i—1
hi(a,b) & (—ZZkaibk_i>+ SN 2t . (25)
i=0 i=0 j=0

For more insight into this definition, we will return to the counterexample
to the previous approach, “11” - “X1”, which resulted in unnecessary overap-
proximation for k = 2. Writing h3 computation as standard addition similarly
to the previously shown long multiplication, the carryover of by is counteracted
by the summand —22b;:

2% ) ) @)

(b)) b1 1
-b; 1
0 1+06; 1

It is apparent that (o (hS") = (5. (hF®) = 0 and unnecessary overapproximation
is not incurred. Using that line of thinking, the definition of A} in Equation 25
can be intuitively regarded as ensuring that the carryover of an unknown bit
into the k-th column is neutralized by a corresponding k-th column summand.
Consequently, if the unknown bit can appear only in both of them simultane-
ously, no unnecessary overapproximation is incurred.

While the maximum 2* step condition is fulfilled in Equation 25, extreme-
finding is much more complicated than for addition, becoming heavily dependent
on abstract input bit pairs of form (a;, l;k,z) where 0 < i < k. Such pairs result
in a summand —2%a;b,_; in hj. When multiplication is rewritten using long



multiplication as previously, this summand is present in the k-th column. We
therefore name such pairs k-th column pairs for conciseness.

In Subsection 7.2, we show that if at most one k-th column pair where
a; = by = X (double-unknown pair) exists, extremes of hj can be found
easily. In Subsection 7.3, we prove that if at least two double-unknown pairs
exist, r, = X. Taken together, this yields a best abstract transformer algorithm
for multiplication. In Subsection 7.4, we discuss implementation considerations
of the algorithm with emphasis on reducing computation time. Finally, in Sub-
section 7.5, we present the final algorithm.

7.2 At Most One Double-Unknown k-th Column Pair

An extreme is given by values a € @,b € b for which the value h}(a,b) is minimal
or maximal (Equation 17). We will show that such a, b can be found successively
when at most one double-unknown k-th column pair is present.

First, for single-unknown k-th column pairs where a; = X , br_; % X , We note
that in Equation 25, the difference between hj when a; = 1 and when a; = 0 is

k—i—1
hia,b|a; =1) = hi(a,b|a; =0) = —=2"b,_; + Y 270, (26)
j=0

Since the result of the sum over j must be in the interval [0,2% — 1], the di-
rection of the change (negative or non-negative) is uniquely given by the value of
bx_;, which is known. It is therefore sufficient to ensure a?‘in < bp_; when mini-
mizing and @™ <« 1 — by_; when maximizing. Similar reasoning can be applied
to single-unknown k-th column pairs where a; # X , IA)k,i =X.

After assigning values to all unknown bits in single-unknown k-th column
pairs, the only still-unknown bits are the ones in the only double-unknown k-th
column pair present. In case such a pair a; = X, 13j = X,j = k — i is present,
the difference between hj when a; and b; are set to arbitrary values and when
they are set to 0 is

hi(a,b) —hi(a,b|a; =0,b; =0) =

(= (4 (27)
—2%a;b; + 2a; [ > 2°b. | +27b; | D 2%a. .
z=0

z=0

When minimizing, it is clearly undesirable to choose a™* b;.“i“. Considering
that the change should not be positive, a® = b;?“i“ = 1 should be chosen if and
only if

j—1 i—1
2! (Z 2sz> + 27 (Z 2Zaz> < 2k, (28)
2=0 2=0



When maximizing, it is clearly undesirable to choose @;"** = b7***. That said,
a;"** =1,b7"** = 0 should be chosen if and only if

27 <§ ZZaz> < 2 <]z_: 2sz> ) (29)

Of course, the choice is arbitrary when both possible choices result in the same
change. After the case of the only double-unknown k-th column pair present is
resolved, there are no further unknown bits and thus, the values of A} extremes
can be computed as

k k—1 k—i—1
hy = (—szagﬂi“bgﬂ‘;) +DD Y artigmingming
i=0 i=0 j=0
(30)
k k—1 k—i—1
= (e ) (55w
i=0 =0 j=0
7.3 Multiple Double-Unknown k-th Column Pairs
Lemma 2. Consider a sequence of integers t = (to,t1,...,tr—1) that fulfills
Vn € 0,7 —2] . [the1 —tn] <28t + 28 <t ). (31)
Then,
In € [0, —1] . (t, mod 21 < 2. (32)
Proof. Use Lemma 1 to transform the claim to equivalent
Jv € [mint, maxt] . (v mod 2¥1) < 2F. (33)
Since [t1,t; + 2] C [min¢, maxt], such claim is implied by
Ju € [to, to + 2] . (v mod 2FF1) < 2% (34)

As [to,to + 2¥] mod 2FF! has 2% + 1 elements and there are only 2% elements
that do not fulfill (v mod 2¥*1) < 2% Equation 34 holds due to the pigeonhole
principle. a

Corollary 1. Given a sequence of integers (to,t1,...,tr—1) that fulfills Lemma 2
and an arbitrary integer C € Z, the lemma also holds for sequence (to + C,t1 +
C,...,tpr—1 +C)
Theorem 4. Let f;:’bm be the best abstract transformer of multiplication. Let a
and b be such that there are pi1,pa, q1,qo in {0,...,k} where

p1#Dp2.p1+ a2 =k.p2t+q =k,

T R e (35)
ap, = X, 0p, = X, bq, = X, by, = X.

Then 7" (a,b) = X .



Proof. For an abstract bit-vector ¢ with positions of unknown bits ui, ..., un,,

denote the concrete bit-vector ¢ € ~(é) for which Vi € {1,...,n} . ¢y, = s;

~ Ay def ~
by Vs1,.er8n (C) Let ¢51)~~751L(C) = ¢(’ys1,m78n (C>)

Now, without loss of generality, assume a only has unknown values in posi-
tions p; and ps and b only has unknown positions q1,qs and p; < p2,q1 < ¢o.
Then, for s, s9,t1,ts € B, using h(a,b) = &(a) - (b),

B(Vsr,52 (8), 1,2 (B)) = (27051 + 27255 + P (@)) - (2711 + 2%t + Boo (b)) (36)
Define A % Pgo(a) and B ef Boo(b) and let them be indexable similarly to
bit-vectors, i.e. Ag. . = (A mod 2*T1) A, = (.(Ay...). Define

roo ~ 7yy def
hg f(’ysl,sz (a)77t1,t2 (b)) =

oPitaig g 4 oP1ta2g g, 4 2941 Ag pp—1 + 27518y gy—1 + (37)
op2tar Sot1 + 2p2+q282t2 + 2q2t2A0..p1,1 + QPQSQB()qufl + AB.

As A, =A,, =By, = By, =0, hEmOf and h are congruent modulo 28+, Define

D(s1, 52, t1,t2) R (g, 4, (@), 7100, () — AP (300(a), 00(B)).  (38)
As p1 + g2 =k and ps + q1 = k,

D(s1, 80, t1,t2) = 2P T sy ty + 2851ty + 2941 A py—1 + 2P $1Bogy—1+

) . (39)
2889ty + 2P2T R 5515 + 2q2t2A0“p1,1 =+ 2p28230”q1,1.

Set s1, s9,1t1,to to specific chosen values and obtain
D(1,1,0,0) = D(1,0,0,0) + D(0,1,0,0),
D(O7071a1) D(030717O)+D(0’05071)7 (40)
D(1,0,0,1) = 2¥ + D(1,0,0,0) + D(0,0,0,1).

Inspecting the various summands, note that

D(1,0,0,0) € [0,2F — 1], D(0,1,0,0) € [0,2F — 1],
D(0,0,1,0) € [0,2% — 1], D(0,0,0,1) € [0,2F — 1], m
D(1,1,0,0) — D(1,0,0,0) € [0,2% — 1],
D(0,0,1,1) — D(0,0,1,0) € [0,2" —1].
Recalling Equation 10, the best abstract transformer can be obtained as
0 € = 3ae~(a),bey(b) . (K (a,b) mod 2¥+1) < 2%, (42)

1e ™t «= Fa e y(a),be~(b). (K% (a,b) + 2F) mod 2¥+1) < 2k,

Constructing a sequence of hzm()f(’yshs2 (@), 7¢,.1,(b)) that fulfills the conditions
of Lemma 2 then implies that both inequalities can be fulfilled due to Corollary 1,



which will complete the proof. Furthermore, as D(s1, $2,t1,t2) only differs from
hzroof(%lm (@), e, .4, (b)) by the absence of summand AB that does not depend
on the choice of sy, s9, t1, t2, it suffices to construct a sequence of D(s1, sa, 11, t2)
that fulfills Lemma 2 as well.

There is at least a 2* step between D(0,0,0,0) and D(1,0,0,1). They will
form the first and the last elements of the sequence, respectively. It remains
to choose the elements in their midst so that there is at most 2* step between
successive elements.

Case 1. D(0,1,0,0) > D(0,0,0,1). Considering Equations 40 and 41, a qualify-

ing sequence is
(D(0,0,0,0),D(1,0,0,0), D(1,1,0,0), D(1,0,0,1)). (43)

Case 2. D(0,1,0,0) < D(0,0,0,1). Using Equation 39, rewrite the case condi-
tion to
9P2=P1 D(1,0,0,0) < 229 D(0,0,1,0). (44)

As p1 4+ g2 = k,p2 +q1 = k, it also holds that go — g1 = p2 — p1. Rewrite the case
condition further to

2P2=P1 (1,0, 0,0) < 2P27P1D(0,0,1,0). (45)

Therefore, D(1,0,0,0) < D(0,0,1,0). Considering Equations 40 and 41, a qual-
ifying sequence is

(D(0,0,0,0),D(0,0,1,0), D(0,0,1,1), D(1,0,0,1)). (46)

This completes the proof. a

7.4 Implementation Considerations

There are some considerations to be taken into account for an efficient imple-
mentation of the fast multiplication algorithm.

The first question is how to detect the positions of single-unknown and
double-unknown k-th column pairs. As such pairs have the form 2*a;b,_;, it is
necessary to perform a bit reversal of one of the bit-vectors before bitwise logic
operations can be used for position detection. Fortunately, it suffices to perform
the reversal only once at the start of the computation. Defining the bit reversal
of the first 2 bits of b as A\(b,z) = (bz_l_i)fz_ol, when the machine word size
W > k41, reversal of the first k+ 1 bits (i.e. the bits in by, ;) may be performed
as

Ab,k+1) = ((br—i)izo) = ((bw—1-) 0 1) = A0 W)w kw1, (47)

It is thus possible to precompute A\(b, W) and, for each k, obtain A(b, k + 1) via
a right shift through W — k — 1 bits, which can be performed in constant time.
Furthermore, power-of-two bit reversals can be performed in logarithmic time



on standard architectures [1, p. 33-35], which makes computation of A(b, W)
even more efficient.

The second problem is finding out whether multiple double-unknown k-th
column pairs exist, and if there is only a single one, what is its position. While
that can be determined trivially in linear time, a find-first-set algorithm can also
be used, which can be implemented in logarithmic time on standard architec-
tures [1, p. 9] and also is typically implemented as a constant-time instruction
on modern processors.

The third problem, computation of b} extremes in Equation 30, is not as eas-
ily mitigated. This is chiefly due to removal of summands with coefficients above
2% due to 2! congruence. While typical processors contain a single-cycle multi-
plication operation, we have not found an efficient way to use it for computation
of Equation 25. To understand why this is problematic, computation of h} with
3-bit operands and k£ = 2 can be visualised as

CRORNCE) (2% @Y @
ag a; ao
by by by

(—azbg) aibg apbo
M (—a1bl) agby
art gxl (—agbz)

The striked-out operands are removed due to 2¥*! congruence, while the k-th
column pair summands are subtracted instead of adding them. These changes
could be performed via some modifications of traditional multiplier implementa-
tion (resulting in a custom processor instruction), but are problematic when only
traditional instructions can be performed in constant time. Instead, we propose
computation of A} via

k

hy(a,b) = Zai (=2Fbj—s + 2'P(bo. f—i-1)) - (48)
i=0

As each summand over ¢ can be computed in constant time on standard ar-
chitectures, hj(a,b) can be computed in linear time. Modified multiplication
techniques with lesser time complexity such as Karatsuba multiplication or
Schénhage—Strassen algorithm [13] could also be considered, but they are un-
likely to improve practical computation time when N corresponds to the word
size of normal microprocessors, i.e. N < 64.

7.5 Fast Abstract Multiplication Algorithm

Applying the previously discussed improvements directly leads to Algorithm 2.
For conciseness, in the algorithm description, bitwise operations are denoted
by the corresponding logical operation symbol, shorter operands have high zeros
added implicitly, and the bits of a™in, g™ax pmin pmax ahove k are not used, so
there is no need to mask them to zero.



Algorithm 2 Fast abstract multiplication algorithm

1:
2
3
4:
5:
6.
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:

rev

rev

function FAST_ABSTRACT_MULTIPLICATION(G, b)

— AbY, W) > Compute machine-word reversals for word size W
— AV, W)

— Ma™, W)

— A(™, W)

for k € {0,...,M} do

Sa — a™ ADbR k1 w—1 > Single-unknown k-th c. pairs, ‘X’ in a

a™® < a¥ V (s, A b;/ev,Wfkfl..Wfl) > Minimize such pairs
a™ < a¥ V (sa A bYo wok—1.w—1) > Maximize such pairs
Sp < ™A ﬁalrvrelv,W—k—l..W—l > Single-unknown k-th c. pairs, ‘X’ in b
D™ = BV (sb A QYey w1 1) > Minimize such pairs
V=YV (sb A 2oy w1 w 1) > Maximize such pairs
d<a™ Nbpgy w_p—1.w-1 > Double-unknown k-th column pairs
if &(d)#0 then > At least one double-unknown 2% pair

i < FIND_FIRST_SET(d)
if @(d) # 2" then > At least two double-unknown k-th col. pairs

cp — X > Theorem 4
continue
end if
j < k—1 > Resolve singular double-unknown k-th column pair
if 2@( o)) +27®(af? ) < 2% then > Equation 28
amin 1
pmin
J
end if
if 2/@(af? ) < 2'P(bg% ;) then > Equation 29
a1
else
pmax 1
J
end if
end if
At 0 > Computed a™™, ™" compute minimum of h}
hyy ™ 0 > Computed a™*, p™** compute maximum of hj
for i € {0,...,k} do > Compute each row separately

if a?“i“.: 1 then
R prmin _(gkpming 4 (2igp(pmin )
end if
if @;"® =1 then .
A prmax _ (gkpmax) 4 (gig(pmax )
end if
end for
it Gu(hp™") # Gu(hp™) then
o X > Set result bit unknown



43: else

44: A 0, ¢ + Ce(h™™) mod 2 > Set value
45: end if

46: end for

47: return ¢

48: end function

Upon inspection, it is clear that the computation complexity is dominated
by computation of A" hMa* and the worst-case time complexity is O(N?),
proving Theorem 2. Since the loops depend on M which does not change when
signed multiplication is considered (only N does), signed multiplication is ex-
pected to incur at most a factor-of-4 slowdown when 2N fits machine word size,
the possible slowdown occurring due to possible splitting of most significant bits
of multiplicands (discussed at the start of Section 7).

8 Experimental Evaluation

We implemented the naive universal algorithm, the fast abstract addition algo-
rithm, and the fast abstract multiplication algorithm in the C++ programming
language, without any parallelization techniques used. In addition to successfully
checking equivalence of naive and fast algorithm outputs for N < 9, we mea-
sured the performance of algorithms with random inputs. The implementation
and measurement scripts are available in the accompanying artifact [9].

To ensure result trustworthiness, random inputs are uniformly distributed
and generated using a C++ standard library Mersenne twister before the mea-
surement. The computed outputs are assigned to a volatile variable to prevent
their removal due to compile-time optimization. Each measurement is taken 20
times and corrected sample standard deviation is visualised.

The program was compiled with GCC 9.3.0, in 64-bit mode and with maxi-
mum speed optimization level -03. It was ran on the conference-supplied virtual
machine on a x86-64 desktop system with an AMD Ryzen 1500X processor.

8.1 Visualisation and Interpretation

We measured the CPU time taken to compute outputs for 10° random input
combinations for all algorithms for N < 8, visualising the time elapsed in Fig-
ure 1. As expected, the naive algorithm exhibits exponential dependency on N
and the fast addition algorithm seems to be always better than the naive one.
The fast multiplication algorithm dominates the naive one for N > 6. The com-
putation time of the naive algorithm makes its usage for N > 16 infeasible even
if more performant hardware and parallelization techniques were used.

For the fast algorithms, we also measured and visualised the results up to
N = 32 in Figure 2. Fast addition is extremely quick for all reasonable input
sizes and fast multiplication remains quick enough even for N = 32. Fast mul-
tiplication results do not seem to exhibit a noticeable quadratic dependency.



We consider it plausible that as IV rises, so does the chance that there are mul-
tiple double-unknown k-th column pairs for an output bit and it is set to ‘X’
quickly, counteracting the worst-case quadratic computation time.

Finally, we fixed N = 32, changing the independent variable to the num-
ber of unknown bits in each input, visualising the measurements in Figure 3.
As expected, the fast multiplication algorithm exhibits a prominent peak with
the easiest instances being all-unknown, as almost all output bits will be quickly
set to ‘X’ due to multiple double-unknown k-th column pairs. Even at the peak
around N = 6, the throughput is still above one hundred thousands computa-
tions per second, which should be enough for model checking usage.

In summary, while the naive algorithm is infeasible for usage even with 16-bit
inputs, the fast algorithms remain quick enough even for 32-bit inputs.

4 - 4 -
% 35| —H— naive addition % 35 —E— naive multiplication
= '3 —+— fast addition - '3 —>— fast multiplication
Q B Q B
& 25 iy a 25t ®
© ©
o 2 - K] 2+
£ 15f g 15}
=] 1k = i 1k e
-] -] %
&5 o5 = &5 05+t ®Q3K
= L olmme®°
0 2 4 6 8 0 2 4 6 8
Number of input operand bits (N) Number of input operand bits (N)

Fig. 1: Measured computation times for 10° random abstract input combinations.

5 —
- —+— fast addition
s 4t ——>x<— fast multiplication XXXXX
b xxx
g 3 g XX
O Xxxx
) B X
g 2 XXX
s x X
2 1¢f x X
o xxx
(@) ¢ X
0 WW%%&H:&&:&:&:#&:{#F

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of input operand bits (N)

Fig. 2: Measured computation time for 10° random abstract input combinations, fast
algorithms only.
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——+— fast addition
—><— fast multiplication
8 -
0
k5
0 - X
& ° x XX
= X
(0] X X
(0] x -4
E 4% X
g X
z X
(@] X %
2+ X
X ¢ % »
XXM X X 3¢ 3¢ ¢
o R R S S S S T S RS S R A RO R R R R B R .

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of unknown bits
in each input

Fig. 3: Measured computation times for 10° random abstract input combinations with
fixed N = 32, while the number of unknown bits in each input varies.

9 Conclusion

We devised a new modular extreme-finding technique for construction of fast
algorithms which compute the best permissible three-valued abstract bit-vector
result of concrete operations with three-valued abstract bit-vector inputs when
the output is not restricted otherwise (forward operation problem). Using the in-
troduced technique, we presented a linear-time algorithm for abstract addition
and a worst-case quadratic algorithm for abstract multiplication. We imple-
mented the algorithms and evaluated them experimentally, showing that their
speed is sufficient even for 32-bit operations, for which naive algorithms are in-
feasibly slow. As such, they may be used to improve the speed of model checkers
which use three-valued abstraction.

There are various research paths that could further the results of this pa-
per. Lesser-used operations still remain to be inspected, most notably the divi-
sion and remainder operations. Composing multiple abstract operations into one
could also potentially reduce overapproximation. Most interestingly, the forward
operation problem could be augmented with pre-restrictions on outputs, which
would allow not only fast generation of the state space in forward fashion, but
its fast pruning as well, allowing fast verification via state space refinement.
Furthermore, verification of hardware containing adders and multipliers could
be improved as well, e.g. by augmenting Boolean satisfiability solvers with algo-
rithms that narrow the search space when such a structure is found.
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