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Introduction

@ Three-valued abstraction = abstract bits can have value ‘0’, ‘1’, or
‘X" (possibly 0, possibly 1)
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Introduction

@ Three-valued abstraction = abstract bits can have value ‘0’, ‘1’, or
‘X' (possibly 0, possibly 1)

@ How to generate a single three-valued bit-vector operation
output for arithmetic operations quickly, with best results?

o For example, getting the best result 7Pt for 4 + b:
5= “XO”, B — “11”
a=00,, b=11,, r=011, =00, + 11,
a=10,, b=11,, r=101, =10, + 11,
,/,\best — «XX1”
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@ Can the best result be obtained in polynomial time?
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Introduction

@ Three-valued abstraction = abstract bits can have value ‘0’, ‘1’, or
‘X' (possibly 0, possibly 1)

@ How to generate a single three-valued bit-vector operation
output for arithmetic operations quickly, with best results?

o For example, getting the best result F°*t for 4 + b

5= X0, b= “11"
a=00,, b=11p, r=011,=00,+ 11,
a=10,, b=11p, r=101,=10,+ 11,
,/,\best — «XX1”

@ Can the best result be obtained in polynomial time?

@ Let's go back to our motivation and formalization first...
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Motivation

o Formally verifying conventional digital processor machine code:
movement + bitwise logic + wrap-around arithmetic + branching

3T. Reinbacher, M. Horauer, and B. Schlich. “Using 3-valued memory representation
for state space reduction in embedded assembly code model checking”. In: 2009 12th
International Symposium on Design and Diagnostics of Electronic Circuits Systems.

2009, pp. 114-119. po1: 10/dhgdww.

*John Regehr and Alastair Reid. "HOIST: A System for Automatically Deriving
Static Analyzers for Embedded Systems”. In: SIGOPS Oper. Syst. Rev. 38.5 (Oct.
2004), pp. 133-143. 1ssN: 0163-5980. pOI: 10/fjcx9w.
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Motivation

o Formally verifying conventional digital processor machine code:
movement + bitwise logic + wrap-around arithmetic + branching

o Explicit state space generation, trying to avoid exponential explosion
— we want a single result

@ Focusing on forward direction, no backtracking

@ Movement + bitwise logic can be performed in linear time (standard
Kleene three-valued logic)3

@ Wrap-around arithmetic: operation results can be precomputed for
8-bit inputs (stored using BDDs), infeasible for larger inputs*
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Formalization of three-valued bit-vectors

@ Abstract bit values formalized as

€07 = {0},1 == {1},X’ := {0,1} (1)

®Institute of Electrical and Electronics Engineers. “IEEE Standard Multivalue Logic
System for VHDL Model Interoperability (Std_logic-1164)". In: |EEE Std 1164-1993
(1993), pp. 1-24. poI: 10/bhz6s9.
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Formalization of three-valued bit-vectors

@ Abstract bit values formalized as
‘0" :={0},1 :={1},X":={0,1} (1)

@ Abstract bit-vectors: tuples of abstract bits, IEEE 1164 notation®:
“XX10” = (‘X7,X7,1,‘0’) = ({0, 1}, {0, 1}, {1},{0})
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Formalization of three-valued bit-vectors

@ Abstract bit values formalized as
‘0" :={0},1 :={1},X":={0,1} (1)

@ Abstract bit-vectors: tuples of abstract bits, IEEE 1164 notation®:
“XX10” = (‘X7,X7,1,‘0’) = ({0, 1}, {0, 1}, {1},{0})
@ Concretization function for abstract bit vectors:

7(§)={a|Vi€{0,...,N—1}.a,-Eé,-}. (2)

o Example: y(“XX10”) = {0010,, 01105, 1010,,1110,}

®Institute of Electrical and Electronics Engineers. “IEEE Standard Multivalue Logic
System for VHDL Model Interoperability (Std_logic-1164)". In: |EEE Std 1164-1993
(1993), pp. 1-24. DOI: 10/bhz6s9.
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Forward operation problem (simplified definitions)

@ Forward operation problem: for a given blnary operator
r:BN x BN — BM, and abstract inputs 3, b, find 7 such that

Vae~(4).be~(b).3cen(F).c=r(ab) (3)
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@ Forward operation problem: for a given blnary operator
r:BN x BN — BM, and abstract inputs 3, b, find 7 such that

Vae~(4).be~(b).3cen(F).c=r(ab) (3)

@ Best abstract transformer: minimizes |y(F)|, naive computation
in ©(22N) time, example 4 + b (just with actual possibilities):
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a=00,, b=115, r=011,=00,+ 11,
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Forward operation problem (simplified definitions)

@ Forward operation problem: for a given blnary operator
r:BN x BN — BM, and abstract inputs 3, b, find 7 such that

Vae~(4).be~(b).3cen(F).c=r(ab) (3)

@ Best abstract transformer: minimizes |y(F)|, naive computation
in ©(22N) time, example 4 + b (just with actual possibilities):

5= “X0", b= 11"
a=00,, b=115, r=011,=00,+ 11,
a=10,, b=11,, r=101, =10, + 11,
pPest = “X X1

@ Back to our question: Can the best result be obtained in
polynomial time?
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Our results

Assuming every input/output bit-vector fits in the machine word of a
traditional processor performing verification,

Theoretical result 1: Fast abstract addition

The best abstract transformer of abstract bit-vector addition is
computable in linear time.

Theoretical result 2: Fast abstract multiplication

The best abstract transformer of abstract bit-vector multiplication is
computable in worst-case quadratic time.

Experimental evaluation results

Fast algorithms can be computed above 100@ for N = 32, while naive
computation is practically infeasible for N > 8. Memory is a non-issue,
only a small fixed amount of temporary variables is needed.

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 6/18



Obtaining fast algorithms: pseudo-Boolean reinterpretation

@ Reinterpret the concrete operation function r as a pseudo-Boolean
operation function h : BN x BN — Ny
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Obtaining fast algorithms: pseudo-Boolean reinterpretation

@ Reinterpret the concrete operation function r as a pseudo-Boolean

operation function h: BN x BN — Ny

@ Use new functions (hk)yzj)l, each congruent with h modulo 2k+1

@ Equivalent best abstract transformer formula:
Vk € {0,. -1}
(0 cf Abest o Jae ,y(a) be 7(13) ( (37 b) mod 2k+1) < 2k) A (4)
(ler Abest & Ja e y(8), b e v(b) . (h(a, b) mod 2KF1) > 2K)

@ Visualisation of hy inequalities for a single bit k:

h(a,b)<2K (mod 2%*1) | he@b)22* (mod 2<+1)

........... 1 | 1 | 1 |
" | | | | | |
2.2k 2k 0 2k 2.2k 3.2k
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Modular extreme-finding technique

@ Step size = absolute change of pseudo-Boolean function value when
one bit is flipped
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Modular extreme-finding technique

@ Step size = absolute change of pseudo-Boolean function value when
one bit is flipped

@ Restrict hy to step size at most 2X, consider the previous modular
inequalities

hy(a,b)<2X (mod 2+*1) | hy(a,b)22K (mod 2++1)

1
2.2k 2K 0! 2k 1 2:2K ! 3.2k
. other value
min hy inbetween max hy
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Modular extreme-finding technique
@ Step size = absolute change of pseudo-Boolean function value when
one bit is flipped
@ Restrict hy to step size at most 2X, consider the previous modular

inequalities
@ Reaching minimum and maximum in the exact same area = only one
holds (‘0"/‘1")
@ Otherwise, both of them hold (‘X")
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Modular extreme-finding technique

@ Step size = absolute change of pseudo-Boolean function value when
one bit is flipped

@ Restrict hy to step size at most 2X, consider the previous modular
inequalities

@ Reaching minimum and maximum in the exact same area = only one
holds (‘0"/‘1")

@ Otherwise, both of them hold (‘X")

@ We now only need to find the extremes to get the best result!
hy(a,b)<2X (mod 2+*1) | hy(a,b)22K (mod 2++1)
<ok <ok <ok <ok

1
2.2k 2K 0! 2k 1 2:2K ! 3.2k
. other value
min hy inbetween max hy
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Fast abstract addition

o For addition,
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Fast abstract addition

o For addition,

N—-1 N—1
(a,b) = (Z 2’a,> + 2 b (5)

j=0

@ To ensure each hy is congruent with h and every step is at most 2%,

k
h} (a, b) (Z 2'3,) + D b (6)

Jj=0
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Fast abstract addition

o For addition,

N—-1 N—1
(a,b) = (Z 2’a,> + [ b (5)

j=0

@ To ensure each hy is congruent with h and every step is at most 2%,

k k
h(a,b) & (Z 2"a,-> + 3 2 (6)
i=0 j=0

@ Finding minimum and maximum in linear time is trivial
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Fast abstract addition

@ For addition,

N-1 N-1
h*(a, b) = (Z 2"a,-> + [ b (5)
i=0

j=0

@ To ensure each hy is congruent with h and every step is at most 2%,

k k
h(a,b) & (Z 2"a,-> + 3 2 (6)
i=0 j=0

@ Finding minimum and maximum in linear time is trivial

o Directly leads to the fast algorithm
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Fast abstract addition
@ For addition,
N—-1 ) N—-1 )
h*(a, b) = (Z 2’a,-> + 2 b (5)
i=0 j=0

@ To ensure each hy is congruent with h and every step is at most 2%,

k k
h(a,b) & (Z 2"a,-) + 3 2 (6)
i=0 j=0

@ Finding minimum and maximum in linear time is trivial
o Directly leads to the fast algorithm

@ Similar for subtraction and summation with multiple independent
operands
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Fast abstract addition: example 1/2

o Example “X0” 4+ “117, k = 0:
> ha— — 44077 + 44177
» min h = 001,
» max h = 001,

@ Visualisation:

ho(a,b)<1 (mod 2) he(a,b)21 (mod 2)

........... i
I | I |\ I |
AY
A%
AN
-2 - 0 LN 2 3
min hy=1
max hg=

. + + i +
. Lm.nlhoJ _ Lma){hoJ — phest — {Lm"‘lhoJ mod 2} = ‘1’

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 10/18



Fast abstract addition: example 2/2

o Example “X0” 4+ “117, k = 1:
> hiO— — uxow + “11”
» min hy = 001,
» maxhj =011,

@ Visualisation:

ho(a,b)<1 (mod 2) | nofab)21 (mod2)
........... | ARS |
| | 1 1 I
1 1
1 1
-4 -2 o ., 2 , 4 6
min hy=1 max hy=3

o [T # M) o et =X
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Fast abstract multiplication: first non-best approach

o First idea: performing multiplication via summation (long
multiplication)

@ Does not result in best abstract transformer

o Counterexample “11”7 - “X1”:

) (2 @) @)

1 1

. by 1

(b1) (k1) b1 1
b1 1

by 2by 1+ b1 1
@ Best result “X0X1", long multiplication produces “XXX1" due
to the interaction of by with itself

e N = 8: 15,9% results unnecessarily overapproximated
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Fast abstract multiplication: finding hy

@ Multiplication pseudo-Boolean operation function:

N N—i

(a,b)=>_ Y 2Mab (7)

i=0 j=0
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Fast abstract multiplication: finding hy

@ Multiplication pseudo-Boolean operation function:

N N—i

(a,b)=>_ Y 2Mab (7)

i=0 j=0
o Just removing summands divisible by 2¥*1 does not work as step
size is at most 2kt — 1:

k—i

k
hi(a, b) =) 21 a;b; (8)

i=0 j=0

(.
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Fast abstract multiplication: finding hy

@ Multiplication pseudo-Boolean operation function:

N N—i

(a, b) = Z Z 2™ a;b; (7)

i=0 j=0
o Just removing summands divisible by 2¥*1 does not work as step
size is at most 2kt — 1:

k—i

k
hi(a, b) = Z 2i+ja;bj (8)

i=0 j=0

-

o Flipping the sign of 2% coefficients, the step size is at most 2%:
k—1 k—i—1

hk def( 22 ajby_ ,)+ Z z 2i+ja;bj (9)

i=0 j=0
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Fast abstract multiplication: finding extremes

@ We have defined hj as

k=1 k—i=1
*(a, b) ( Zz aiby_ ) + (D D 2Ma (10)
i=0 0

Jj=

o Now depends on values of variables forming summands 2%a; by _;
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Fast abstract multiplication: finding extremes

@ We have defined hj as

k—1
hi(a, b) = < Z2abk ,)—i— Z
i=0

k—i—1 o
2’+Ja,-bj (10)
J

—0

o Now depends on values of variables forming summands 2%a; by _;

@ At least two of them with both abstract bits ‘X' (double-unknown
k-th column pairs): we have proven that they imply r‘DESt X’
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Fast abstract multiplication: finding extremes

@ We have defined hy as

_i—

k—1 k—i—1
h(a, b) < Zz ajby_ ) +DD D 2Han (10)
i=0 j=0
o Now depends on values of variables forming summands 2%a; by _;

@ At least two of them with both abstract bits ‘X' (double-unknown
k-th column pairs): we have proven that they imply rbeSt X’

@ Otherwise, single-unknown k-th column pairs can be
minimized /maximized
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Fast abstract multiplication: finding extremes

@ We have defined hy as

_i—

k—1 k 1
hi(a, b) < Zz aibi_ ) + (D D 2Ma (10)
i=0 0

Jj=

o Now depends on values of variables forming summands 2%a; by _;

@ At least two of them with both abstract bits ‘X' (double-unknown
k-th column pairs): we have proven that they imply rbeSt X’

@ Otherwise, single-unknown k-th column pairs can be
minimized /maximized

@ The one possibly remaining double-unknown k-th column pair with
both abstract bits ‘X' can be resolved as a special case afterwards
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Fast abstract multiplication: finding extremes

@ We have defined hy as

k—1
hi(a, b) < Zz aiby_ ,>+ SN 2Ma (10)
i=0

k—i—1
j=0

o Now depends on values of variables forming summands 2%a; by _;

@ At least two of them with both abstract bits ‘X' (double-unknown
k-th column pairs): we have proven that they imply rbeSt X’

@ Otherwise, single-unknown k-th column pairs can be
minimized /maximized

@ The one possibly remaining double-unknown k-th column pair with
both abstract bits ‘X' can be resolved as a special case afterwards
o Best abstract transformer with worst-case time complexity ©(N?)

» main problem: hj cannot be computed with standard multiplication
instruction
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Experimental evaluation

@ Our C++ implementation (conference artifact) available on figshare
under CCO licence
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Experimental evaluation
@ Our C++ implementation (conference artifact) available on figshare
under CCO licence

o Computationally verified equivalence of naive and fast algorithms
for N <9
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Experimental evaluation

@ Our C++ implementation (conference artifact) available on figshare
under CCO licence
o Computationally verified equivalence of naive and fast algorithms
for N <9
@ Fast algorithms much faster for interesting N > 8

4
3.5
3
2.5
2
1.5
1
0.5
0

CPU time elapsed [s]

Number of input operand bits (N)

—HE— naive addition
——+— fast addition

|
L =
—a—@—a—ﬁh

0 2 4 6 8

CPU time elapsed [s]

4
3.5
3
2.5
2
1.5
1
0.5
0

—&— naive multiplication
—>— fast multiplication

(0]

I ®
L @Q)—(X

0 2 4 6 8

Number of input operand bits (N)

Figure 1: Measured computation times for 106 random abstract input
combinations.
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Experimental evaluation: fast algorithms

@ Fast multiplication does not exhibit very noticeable quadratic
behaviour for random inputs
o Fast addition extremely fast, fast multiplication still above 100@

for N = 32

5 —
b ——+— fast addition
— 4 | > fast multiplication x X X
° x X X
(%] x ><
% 3r b4 X X
© X X

X

(0] 2 | ><>< ><
£ s XX
2 1+ % X X X
O ¢ X

o Lok K o

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of input operand bits (N)

Figure 2: Measured computation time for 10° random abstract input
combinations, fast algorithms only.
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Experimental evaluation: dependence on the number of

unknown bits

@ Fast multiplication speed exhibits clear dependence

@ Input combinations with no unknown bits are easier

@ With many unknown bits, there is a high probability of multiple
double-unknown k-th column pairs, implying 7, = ‘X’

CPU time elapsed [s]

10

8

—+— fast addition
—><— fast multiplication

X X ¥
XXX X x
X X

X
XXX

XX
xxxxxxxxxxxx

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of unknown bits
in each input

Figure 3: Measured computation times for 106 random abstract input
combinations with fixed N = 32, while the number of unknown bits in each input

varies.

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18

17/18



Conclusion

@ Generalized resolution of bitwise operations in three-valued logic
to a forward operation problem
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to a forward operation problem

@ Devised a novel modular extreme-finding technique for best
abstract transformer construction and proven its correctness

@ Best abstract transformer algorithms found: ©(N) addition,
worst-case ©(N?2) multiplication, implemented, working well
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Conclusion

@ Generalized resolution of bitwise operations in three-valued logic
to a forward operation problem

@ Devised a novel modular extreme-finding technique for best
abstract transformer construction and proven its correctness

@ Best abstract transformer algorithms found: ©(N) addition,
worst-case ©(N?2) multiplication, implemented, working well

o Easily generalized to subtraction and general summation
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Conclusion

@ Generalized resolution of bitwise operations in three-valued logic
to a forward operation problem

@ Devised a novel modular extreme-finding technique for best
abstract transformer construction and proven its correctness

@ Best abstract transformer algorithms found: ©(N) addition,
worst-case ©(N?2) multiplication, implemented, working well
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