
Fast Three-Valued Abstract Bit-Vector Arithmetic

Jan Onderka1 and Stefan Ratschan2

2022-01-18

1Czech Technical University in Prague, Faculty of Information Technology, Prague,
Czech Republic

2The Czech Academy of Sciences, Institute of Computer Science, Prague,
Czech Republic

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 1 / 18



Introduction

Three-valued abstraction = abstract bits can have value ‘0’, ‘1’, or
‘X’ (possibly 0, possibly 1)

How to generate a single three-valued bit-vector operation
output for arithmetic operations quickly, with best results?

For example, getting the best result r̂best for â+ b̂:

â = “X0”, b̂ = “11”

a = 002, b = 112, r = 0112 = 002 + 112

a = 102, b = 112, r = 1012 = 102 + 112

r̂best = “XX1”

Can the best result be obtained in polynomial time?

Let’s go back to our motivation and formalization first...

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 2 / 18



Introduction

Three-valued abstraction = abstract bits can have value ‘0’, ‘1’, or
‘X’ (possibly 0, possibly 1)

How to generate a single three-valued bit-vector operation
output for arithmetic operations quickly, with best results?

For example, getting the best result r̂best for â+ b̂:

â = “X0”, b̂ = “11”

a = 002, b = 112, r = 0112 = 002 + 112

a = 102, b = 112, r = 1012 = 102 + 112

r̂best = “XX1”

Can the best result be obtained in polynomial time?

Let’s go back to our motivation and formalization first...

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 2 / 18



Introduction

Three-valued abstraction = abstract bits can have value ‘0’, ‘1’, or
‘X’ (possibly 0, possibly 1)

How to generate a single three-valued bit-vector operation
output for arithmetic operations quickly, with best results?

For example, getting the best result r̂best for â+ b̂:

â = “X0”, b̂ = “11”

a = 002, b = 112, r = 0112 = 002 + 112

a = 102, b = 112, r = 1012 = 102 + 112

r̂best = “XX1”

Can the best result be obtained in polynomial time?

Let’s go back to our motivation and formalization first...

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 2 / 18



Introduction

Three-valued abstraction = abstract bits can have value ‘0’, ‘1’, or
‘X’ (possibly 0, possibly 1)

How to generate a single three-valued bit-vector operation
output for arithmetic operations quickly, with best results?

For example, getting the best result r̂best for â+ b̂:

â = “X0”, b̂ = “11”

a = 002, b = 112, r = 0112 = 002 + 112

a = 102, b = 112, r = 1012 = 102 + 112

r̂best = “XX1”

Can the best result be obtained in polynomial time?

Let’s go back to our motivation and formalization first...

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 2 / 18



Motivation

Formally verifying conventional digital processor machine code:
movement + bitwise logic + wrap-around arithmetic + branching

Explicit state space generation, trying to avoid exponential explosion
→ we want a single result

Focusing on forward direction, no backtracking

Movement + bitwise logic can be performed in linear time (standard
Kleene three-valued logic)3

Wrap-around arithmetic: operation results can be precomputed for
8-bit inputs (stored using BDDs), infeasible for larger inputs4

3T. Reinbacher, M. Horauer, and B. Schlich. “Using 3-valued memory representation
for state space reduction in embedded assembly code model checking”. In: 2009 12th
International Symposium on Design and Diagnostics of Electronic Circuits Systems.
2009, pp. 114–119. doi: 10/dhg4ww.

4John Regehr and Alastair Reid. “HOIST: A System for Automatically Deriving
Static Analyzers for Embedded Systems”. In: SIGOPS Oper. Syst. Rev. 38.5 (Oct.
2004), pp. 133–143. issn: 0163-5980. doi: 10/fjcx9w.

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 3 / 18

https://doi.org/10/dhg4ww
https://doi.org/10/fjcx9w


Motivation

Formally verifying conventional digital processor machine code:
movement + bitwise logic + wrap-around arithmetic + branching

Explicit state space generation, trying to avoid exponential explosion
→ we want a single result

Focusing on forward direction, no backtracking

Movement + bitwise logic can be performed in linear time (standard
Kleene three-valued logic)3

Wrap-around arithmetic: operation results can be precomputed for
8-bit inputs (stored using BDDs), infeasible for larger inputs4

3T. Reinbacher, M. Horauer, and B. Schlich. “Using 3-valued memory representation
for state space reduction in embedded assembly code model checking”. In: 2009 12th
International Symposium on Design and Diagnostics of Electronic Circuits Systems.
2009, pp. 114–119. doi: 10/dhg4ww.

4John Regehr and Alastair Reid. “HOIST: A System for Automatically Deriving
Static Analyzers for Embedded Systems”. In: SIGOPS Oper. Syst. Rev. 38.5 (Oct.
2004), pp. 133–143. issn: 0163-5980. doi: 10/fjcx9w.

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 3 / 18

https://doi.org/10/dhg4ww
https://doi.org/10/fjcx9w


Motivation

Formally verifying conventional digital processor machine code:
movement + bitwise logic + wrap-around arithmetic + branching

Explicit state space generation, trying to avoid exponential explosion
→ we want a single result

Focusing on forward direction, no backtracking

Movement + bitwise logic can be performed in linear time (standard
Kleene three-valued logic)3

Wrap-around arithmetic: operation results can be precomputed for
8-bit inputs (stored using BDDs), infeasible for larger inputs4

3T. Reinbacher, M. Horauer, and B. Schlich. “Using 3-valued memory representation
for state space reduction in embedded assembly code model checking”. In: 2009 12th
International Symposium on Design and Diagnostics of Electronic Circuits Systems.
2009, pp. 114–119. doi: 10/dhg4ww.

4John Regehr and Alastair Reid. “HOIST: A System for Automatically Deriving
Static Analyzers for Embedded Systems”. In: SIGOPS Oper. Syst. Rev. 38.5 (Oct.
2004), pp. 133–143. issn: 0163-5980. doi: 10/fjcx9w.

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 3 / 18

https://doi.org/10/dhg4ww
https://doi.org/10/fjcx9w


Motivation

Formally verifying conventional digital processor machine code:
movement + bitwise logic + wrap-around arithmetic + branching

Explicit state space generation, trying to avoid exponential explosion
→ we want a single result

Focusing on forward direction, no backtracking

Movement + bitwise logic can be performed in linear time (standard
Kleene three-valued logic)3

Wrap-around arithmetic: operation results can be precomputed for
8-bit inputs (stored using BDDs), infeasible for larger inputs4

3T. Reinbacher, M. Horauer, and B. Schlich. “Using 3-valued memory representation
for state space reduction in embedded assembly code model checking”. In: 2009 12th
International Symposium on Design and Diagnostics of Electronic Circuits Systems.
2009, pp. 114–119. doi: 10/dhg4ww.

4John Regehr and Alastair Reid. “HOIST: A System for Automatically Deriving
Static Analyzers for Embedded Systems”. In: SIGOPS Oper. Syst. Rev. 38.5 (Oct.
2004), pp. 133–143. issn: 0163-5980. doi: 10/fjcx9w.

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 3 / 18

https://doi.org/10/dhg4ww
https://doi.org/10/fjcx9w


Motivation

Formally verifying conventional digital processor machine code:
movement + bitwise logic + wrap-around arithmetic + branching

Explicit state space generation, trying to avoid exponential explosion
→ we want a single result

Focusing on forward direction, no backtracking

Movement + bitwise logic can be performed in linear time (standard
Kleene three-valued logic)3

Wrap-around arithmetic: operation results can be precomputed for
8-bit inputs (stored using BDDs), infeasible for larger inputs4

3T. Reinbacher, M. Horauer, and B. Schlich. “Using 3-valued memory representation
for state space reduction in embedded assembly code model checking”. In: 2009 12th
International Symposium on Design and Diagnostics of Electronic Circuits Systems.
2009, pp. 114–119. doi: 10/dhg4ww.

4John Regehr and Alastair Reid. “HOIST: A System for Automatically Deriving
Static Analyzers for Embedded Systems”. In: SIGOPS Oper. Syst. Rev. 38.5 (Oct.
2004), pp. 133–143. issn: 0163-5980. doi: 10/fjcx9w.

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 3 / 18

https://doi.org/10/dhg4ww
https://doi.org/10/fjcx9w


Formalization of three-valued bit-vectors

Abstract bit values formalized as

‘0’ := {0}, ‘1’ := {1}, ‘X’ := {0, 1} (1)

Abstract bit-vectors: tuples of abstract bits, IEEE 1164 notation5:
“XX10” = (‘X’, ‘X’, ‘1’, ‘0’) = ({0, 1}, {0, 1}, {1}, {0})
Concretization function for abstract bit vectors:

γ(â) = {a | ∀i ∈ {0, . . . ,N − 1} . ai ∈ âi}. (2)

Example: γ(“XX10”) = {00102, 01102, 10102, 11102}

5Institute of Electrical and Electronics Engineers. “IEEE Standard Multivalue Logic
System for VHDL Model Interoperability (Std logic 1164)”. In: IEEE Std 1164-1993
(1993), pp. 1–24. doi: 10/bhz6s9.

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 4 / 18

https://doi.org/10/bhz6s9


Formalization of three-valued bit-vectors

Abstract bit values formalized as

‘0’ := {0}, ‘1’ := {1}, ‘X’ := {0, 1} (1)

Abstract bit-vectors: tuples of abstract bits, IEEE 1164 notation5:
“XX10” = (‘X’, ‘X’, ‘1’, ‘0’) = ({0, 1}, {0, 1}, {1}, {0})

Concretization function for abstract bit vectors:

γ(â) = {a | ∀i ∈ {0, . . . ,N − 1} . ai ∈ âi}. (2)

Example: γ(“XX10”) = {00102, 01102, 10102, 11102}

5Institute of Electrical and Electronics Engineers. “IEEE Standard Multivalue Logic
System for VHDL Model Interoperability (Std logic 1164)”. In: IEEE Std 1164-1993
(1993), pp. 1–24. doi: 10/bhz6s9.

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 4 / 18

https://doi.org/10/bhz6s9


Formalization of three-valued bit-vectors

Abstract bit values formalized as

‘0’ := {0}, ‘1’ := {1}, ‘X’ := {0, 1} (1)

Abstract bit-vectors: tuples of abstract bits, IEEE 1164 notation5:
“XX10” = (‘X’, ‘X’, ‘1’, ‘0’) = ({0, 1}, {0, 1}, {1}, {0})
Concretization function for abstract bit vectors:

γ(â) = {a | ∀i ∈ {0, . . . ,N − 1} . ai ∈ âi}. (2)

Example: γ(“XX10”) = {00102, 01102, 10102, 11102}

5Institute of Electrical and Electronics Engineers. “IEEE Standard Multivalue Logic
System for VHDL Model Interoperability (Std logic 1164)”. In: IEEE Std 1164-1993
(1993), pp. 1–24. doi: 10/bhz6s9.

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 4 / 18

https://doi.org/10/bhz6s9


Forward operation problem (simplified definitions)

Forward operation problem: for a given binary operator
r : BN × BN → BM , and abstract inputs â, b̂, find r̂ such that

∀a ∈ γ(â) . b ∈ γ(b̂) . ∃c ∈ γ(r̂) . c = r(a, b) (3)

Best abstract transformer : minimizes |γ(r̂)|, näıve computation
in Θ(22N) time, example â+ b̂ (just with actual possibilities):

â = “X0”, b̂ = “11”

a = 002, b = 112, r = 0112 = 002 + 112

a = 102, b = 112, r = 1012 = 102 + 112

r̂best = “XX1”

Back to our question: Can the best result be obtained in
polynomial time?

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 5 / 18



Forward operation problem (simplified definitions)

Forward operation problem: for a given binary operator
r : BN × BN → BM , and abstract inputs â, b̂, find r̂ such that

∀a ∈ γ(â) . b ∈ γ(b̂) . ∃c ∈ γ(r̂) . c = r(a, b) (3)

Best abstract transformer : minimizes |γ(r̂)|, näıve computation
in Θ(22N) time, example â+ b̂ (just with actual possibilities):

â = “X0”, b̂ = “11”

a = 002, b = 112, r = 0112 = 002 + 112

a = 102, b = 112, r = 1012 = 102 + 112

r̂best = “XX1”

Back to our question: Can the best result be obtained in
polynomial time?

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 5 / 18



Forward operation problem (simplified definitions)

Forward operation problem: for a given binary operator
r : BN × BN → BM , and abstract inputs â, b̂, find r̂ such that

∀a ∈ γ(â) . b ∈ γ(b̂) . ∃c ∈ γ(r̂) . c = r(a, b) (3)

Best abstract transformer : minimizes |γ(r̂)|, näıve computation
in Θ(22N) time, example â+ b̂ (just with actual possibilities):

â = “X0”, b̂ = “11”

a = 002, b = 112, r = 0112 = 002 + 112

a = 102, b = 112, r = 1012 = 102 + 112

r̂best = “XX1”

Back to our question: Can the best result be obtained in
polynomial time?

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 5 / 18



Our results
Assuming every input/output bit-vector fits in the machine word of a
traditional processor performing verification,

Theoretical result 1: Fast abstract addition

The best abstract transformer of abstract bit-vector addition is
computable in linear time.

Theoretical result 2: Fast abstract multiplication

The best abstract transformer of abstract bit-vector multiplication is
computable in worst-case quadratic time.

Experimental evaluation results

Fast algorithms can be computed above 100kOps
s for N = 32, while näıve

computation is practically infeasible for N > 8. Memory is a non-issue,
only a small fixed amount of temporary variables is needed.

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 6 / 18



Obtaining fast algorithms: pseudo-Boolean reinterpretation

Reinterpret the concrete operation function r as a pseudo-Boolean
operation function h : BN × BN → N0

Use new functions (hk)
M−1
k=0 , each congruent with h modulo 2k+1

Equivalent best abstract transformer formula:

∀k ∈ {0, . . . ,M − 1} .

(0 ∈ r̂bestk ⇔ ∃a ∈ γ(â), b ∈ γ(b̂) . (hk(a, b) mod 2k+1) < 2k) ∧
(1 ∈ r̂bestk ⇔ ∃a ∈ γ(â), b ∈ γ(b̂) . (hk(a, b) mod 2k+1) ≥ 2k)

(4)

Visualisation of hk inequalities for a single bit k:

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 7 / 18



Obtaining fast algorithms: pseudo-Boolean reinterpretation

Reinterpret the concrete operation function r as a pseudo-Boolean
operation function h : BN × BN → N0

Use new functions (hk)
M−1
k=0 , each congruent with h modulo 2k+1

Equivalent best abstract transformer formula:

∀k ∈ {0, . . . ,M − 1} .

(0 ∈ r̂bestk ⇔ ∃a ∈ γ(â), b ∈ γ(b̂) . (hk(a, b) mod 2k+1) < 2k) ∧
(1 ∈ r̂bestk ⇔ ∃a ∈ γ(â), b ∈ γ(b̂) . (hk(a, b) mod 2k+1) ≥ 2k)

(4)

Visualisation of hk inequalities for a single bit k:

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 7 / 18



Obtaining fast algorithms: pseudo-Boolean reinterpretation

Reinterpret the concrete operation function r as a pseudo-Boolean
operation function h : BN × BN → N0

Use new functions (hk)
M−1
k=0 , each congruent with h modulo 2k+1

Equivalent best abstract transformer formula:

∀k ∈ {0, . . . ,M − 1} .

(0 ∈ r̂bestk ⇔ ∃a ∈ γ(â), b ∈ γ(b̂) . (hk(a, b) mod 2k+1) < 2k) ∧
(1 ∈ r̂bestk ⇔ ∃a ∈ γ(â), b ∈ γ(b̂) . (hk(a, b) mod 2k+1) ≥ 2k)

(4)

Visualisation of hk inequalities for a single bit k:

0 2⋅2k-2k 2k 3⋅2k-2⋅2k

hk

hk(a,b)<2k (mod 2k+1) hk(a,b)≥2k (mod 2k+1)

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 7 / 18



Modular extreme-finding technique

Step size = absolute change of pseudo-Boolean function value when
one bit is flipped

Restrict hk to step size at most 2k , consider the previous modular
inequalities

Reaching minimum and maximum in the exact same area ⇒ only one
holds (‘0’/‘1’)

Otherwise, both of them hold (‘X’)

We now only need to find the extremes to get the best result!

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 8 / 18



Modular extreme-finding technique
Step size = absolute change of pseudo-Boolean function value when
one bit is flipped

Restrict hk to step size at most 2k , consider the previous modular
inequalities

Reaching minimum and maximum in the exact same area ⇒ only one
holds (‘0’/‘1’)

Otherwise, both of them hold (‘X’)

We now only need to find the extremes to get the best result!

≤2k≤2k≤2k≤2k

0 2⋅2k-2k 2k 3⋅2k-2⋅2k

hk

hk(a,b)<2k (mod 2k+1) hk(a,b)≥2k (mod 2k+1)

min hk max hk
other value

inbetween

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 8 / 18



Modular extreme-finding technique
Step size = absolute change of pseudo-Boolean function value when
one bit is flipped

Restrict hk to step size at most 2k , consider the previous modular
inequalities

Reaching minimum and maximum in the exact same area ⇒ only one
holds (‘0’/‘1’)

Otherwise, both of them hold (‘X’)

We now only need to find the extremes to get the best result!

≤2k≤2k≤2k≤2k

0 2⋅2k-2k 2k 3⋅2k-2⋅2k

hk

hk(a,b)<2k (mod 2k+1) hk(a,b)≥2k (mod 2k+1)

min hk max hk
other value

inbetween

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 8 / 18



Modular extreme-finding technique
Step size = absolute change of pseudo-Boolean function value when
one bit is flipped

Restrict hk to step size at most 2k , consider the previous modular
inequalities

Reaching minimum and maximum in the exact same area ⇒ only one
holds (‘0’/‘1’)

Otherwise, both of them hold (‘X’)

We now only need to find the extremes to get the best result!

≤2k≤2k≤2k≤2k

0 2⋅2k-2k 2k 3⋅2k-2⋅2k

hk

hk(a,b)<2k (mod 2k+1) hk(a,b)≥2k (mod 2k+1)

min hk max hk
other value

inbetween

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 8 / 18



Fast abstract addition

For addition,

h+(a, b) =

(
N−1∑
i=0

2iai

)
+

N−1∑
j=0

2jbj

 (5)

To ensure each hk is congruent with h and every step is at most 2k ,

h+k (a, b)
def
=

(
k∑

i=0

2iai

)
+

 k∑
j=0

2jbj

 (6)

Finding minimum and maximum in linear time is trivial

Directly leads to the fast algorithm

Similar for subtraction and summation with multiple independent
operands

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 9 / 18



Fast abstract addition

For addition,

h+(a, b) =

(
N−1∑
i=0

2iai

)
+

N−1∑
j=0

2jbj

 (5)

To ensure each hk is congruent with h and every step is at most 2k ,

h+k (a, b)
def
=

(
k∑

i=0

2iai

)
+

 k∑
j=0

2jbj

 (6)

Finding minimum and maximum in linear time is trivial

Directly leads to the fast algorithm

Similar for subtraction and summation with multiple independent
operands

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 9 / 18



Fast abstract addition

For addition,

h+(a, b) =

(
N−1∑
i=0

2iai

)
+

N−1∑
j=0

2jbj

 (5)

To ensure each hk is congruent with h and every step is at most 2k ,

h+k (a, b)
def
=

(
k∑

i=0

2iai

)
+

 k∑
j=0

2jbj

 (6)

Finding minimum and maximum in linear time is trivial

Directly leads to the fast algorithm

Similar for subtraction and summation with multiple independent
operands

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 9 / 18



Fast abstract addition

For addition,

h+(a, b) =

(
N−1∑
i=0

2iai

)
+

N−1∑
j=0

2jbj

 (5)

To ensure each hk is congruent with h and every step is at most 2k ,

h+k (a, b)
def
=

(
k∑

i=0

2iai

)
+

 k∑
j=0

2jbj

 (6)

Finding minimum and maximum in linear time is trivial

Directly leads to the fast algorithm

Similar for subtraction and summation with multiple independent
operands

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 9 / 18



Fast abstract addition

For addition,

h+(a, b) =

(
N−1∑
i=0

2iai

)
+

N−1∑
j=0

2jbj

 (5)

To ensure each hk is congruent with h and every step is at most 2k ,

h+k (a, b)
def
=

(
k∑

i=0

2iai

)
+

 k∑
j=0

2jbj

 (6)

Finding minimum and maximum in linear time is trivial

Directly leads to the fast algorithm

Similar for subtraction and summation with multiple independent
operands

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 9 / 18



Fast abstract addition: example 1/2

Example “X0” + “11”, k = 0:
▶ h+0 = “0”+ “1”
▶ min h+0 = 0012
▶ max h+0 = 0012

Visualisation:

min h0=1
max h0=1

0 2-1 1 3-2

h0(a,b)<1 (mod 2) h0(a,b)≥1 (mod 2)

⌊min h+0
1 ⌋ = ⌊max h+0

1 ⌋ → r̂best0 = {⌊min h+0
1 ⌋ mod 2} = ‘1’

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 10 / 18



Fast abstract addition: example 2/2

Example “X0” + “11”, k = 1:
▶ h+1 = “X0”+ “11”
▶ min h+0 = 0012
▶ max h+0 = 0112

Visualisation:

0 4-2 2 6-4

h0(a,b)<1 (mod 2) h0(a,b)≥1 (mod 2)

min h1=1 max h1=3

⌊min h+0
2 ⌋ ≠ ⌊max h+0

2 ⌋ → r̂best1 = ‘X’

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 11 / 18



Fast abstract multiplication: first non-best approach

First idea: performing multiplication via summation (long
multiplication)

Does not result in best abstract transformer

Counterexample “11” · “X1”:
(23) (22) (21) (20)

1 1
· b1 1

(b1) (b1) b1 1
b1 1

b1 2b1 1 + b1 1

Best result “X0X1”, long multiplication produces “XXX1” due
to the interaction of b1 with itself

N = 8: 15,9% results unnecessarily overapproximated

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 12 / 18



Fast abstract multiplication: finding hk
Multiplication pseudo-Boolean operation function:

h∗(a, b) =
N∑
i=0

N−i∑
j=0

2i+jaibj (7)

Just removing summands divisible by 2k+1 does not work as step
size is at most 2k+1 − 1:

hk(a, b) =
k∑

i=0

k−i∑
j=0

2i+jaibj (8)

Flipping the sign of 2k coefficients, the step size is at most 2k :

h∗k(a, b)
def
=

(
−

k∑
i=0

2kaibk−i

)
+

k−1∑
i=0

k−i−1∑
j=0

2i+jaibj

 (9)

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 13 / 18



Fast abstract multiplication: finding hk
Multiplication pseudo-Boolean operation function:

h∗(a, b) =
N∑
i=0

N−i∑
j=0

2i+jaibj (7)

Just removing summands divisible by 2k+1 does not work as step
size is at most 2k+1 − 1:

hk(a, b) =
k∑

i=0

k−i∑
j=0

2i+jaibj (8)

Flipping the sign of 2k coefficients, the step size is at most 2k :

h∗k(a, b)
def
=

(
−

k∑
i=0

2kaibk−i

)
+

k−1∑
i=0

k−i−1∑
j=0

2i+jaibj

 (9)

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 13 / 18



Fast abstract multiplication: finding hk
Multiplication pseudo-Boolean operation function:

h∗(a, b) =
N∑
i=0

N−i∑
j=0

2i+jaibj (7)

Just removing summands divisible by 2k+1 does not work as step
size is at most 2k+1 − 1:

hk(a, b) =
k∑

i=0

k−i∑
j=0

2i+jaibj (8)

Flipping the sign of 2k coefficients, the step size is at most 2k :

h∗k(a, b)
def
=

(
−

k∑
i=0

2kaibk−i

)
+

k−1∑
i=0

k−i−1∑
j=0

2i+jaibj

 (9)

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 13 / 18



Fast abstract multiplication: finding extremes

We have defined h∗k as

h∗k(a, b) =

(
−

k∑
i=0

2kaibk−i

)
+

k−1∑
i=0

k−i−1∑
j=0

2i+jaibj

 (10)

Now depends on values of variables forming summands 2kaibk−i

At least two of them with both abstract bits ‘X’ (double-unknown
k-th column pairs): we have proven that they imply r̂bestk = ‘X’

Otherwise, single-unknown k-th column pairs can be
minimized/maximized

The one possibly remaining double-unknown k-th column pair with
both abstract bits ‘X’ can be resolved as a special case afterwards

Best abstract transformer with worst-case time complexity Θ(N2)
▶ main problem: h∗k cannot be computed with standard multiplication

instruction

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 14 / 18



Fast abstract multiplication: finding extremes

We have defined h∗k as

h∗k(a, b) =

(
−

k∑
i=0

2kaibk−i

)
+

k−1∑
i=0

k−i−1∑
j=0

2i+jaibj

 (10)

Now depends on values of variables forming summands 2kaibk−i

At least two of them with both abstract bits ‘X’ (double-unknown
k-th column pairs): we have proven that they imply r̂bestk = ‘X’

Otherwise, single-unknown k-th column pairs can be
minimized/maximized

The one possibly remaining double-unknown k-th column pair with
both abstract bits ‘X’ can be resolved as a special case afterwards

Best abstract transformer with worst-case time complexity Θ(N2)
▶ main problem: h∗k cannot be computed with standard multiplication

instruction

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 14 / 18



Fast abstract multiplication: finding extremes

We have defined h∗k as

h∗k(a, b) =

(
−

k∑
i=0

2kaibk−i

)
+

k−1∑
i=0

k−i−1∑
j=0

2i+jaibj

 (10)

Now depends on values of variables forming summands 2kaibk−i

At least two of them with both abstract bits ‘X’ (double-unknown
k-th column pairs): we have proven that they imply r̂bestk = ‘X’

Otherwise, single-unknown k-th column pairs can be
minimized/maximized

The one possibly remaining double-unknown k-th column pair with
both abstract bits ‘X’ can be resolved as a special case afterwards

Best abstract transformer with worst-case time complexity Θ(N2)
▶ main problem: h∗k cannot be computed with standard multiplication

instruction

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 14 / 18



Fast abstract multiplication: finding extremes

We have defined h∗k as

h∗k(a, b) =

(
−

k∑
i=0

2kaibk−i

)
+

k−1∑
i=0

k−i−1∑
j=0

2i+jaibj

 (10)

Now depends on values of variables forming summands 2kaibk−i

At least two of them with both abstract bits ‘X’ (double-unknown
k-th column pairs): we have proven that they imply r̂bestk = ‘X’

Otherwise, single-unknown k-th column pairs can be
minimized/maximized

The one possibly remaining double-unknown k-th column pair with
both abstract bits ‘X’ can be resolved as a special case afterwards

Best abstract transformer with worst-case time complexity Θ(N2)
▶ main problem: h∗k cannot be computed with standard multiplication

instruction

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 14 / 18



Fast abstract multiplication: finding extremes

We have defined h∗k as

h∗k(a, b) =

(
−

k∑
i=0

2kaibk−i

)
+

k−1∑
i=0

k−i−1∑
j=0

2i+jaibj

 (10)

Now depends on values of variables forming summands 2kaibk−i

At least two of them with both abstract bits ‘X’ (double-unknown
k-th column pairs): we have proven that they imply r̂bestk = ‘X’

Otherwise, single-unknown k-th column pairs can be
minimized/maximized

The one possibly remaining double-unknown k-th column pair with
both abstract bits ‘X’ can be resolved as a special case afterwards

Best abstract transformer with worst-case time complexity Θ(N2)
▶ main problem: h∗k cannot be computed with standard multiplication

instruction

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 14 / 18



Experimental evaluation
Our C++ implementation (conference artifact) available on figshare
under CC0 licence

Computationally verified equivalence of näıve and fast algorithms
for N ≤ 9
Fast algorithms much faster for interesting N ≥ 8

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  2  4  6  8

C
P
U

 t
im

e
 e

la
p

se
d
 [

s]

Number of input operand bits (N)

naïve addition
fast addition

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  2  4  6  8

C
P
U

 t
im

e
 e

la
p

se
d
 [

s]

Number of input operand bits (N)

naïve multiplication
fast multiplication

Figure 1: Measured computation times for 106 random abstract input
combinations.

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 15 / 18



Experimental evaluation
Our C++ implementation (conference artifact) available on figshare
under CC0 licence
Computationally verified equivalence of näıve and fast algorithms
for N ≤ 9

Fast algorithms much faster for interesting N ≥ 8

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  2  4  6  8

C
P
U

 t
im

e
 e

la
p

se
d
 [

s]

Number of input operand bits (N)

naïve addition
fast addition

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  2  4  6  8

C
P
U

 t
im

e
 e

la
p

se
d
 [

s]

Number of input operand bits (N)

naïve multiplication
fast multiplication

Figure 1: Measured computation times for 106 random abstract input
combinations.

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 15 / 18



Experimental evaluation
Our C++ implementation (conference artifact) available on figshare
under CC0 licence
Computationally verified equivalence of näıve and fast algorithms
for N ≤ 9
Fast algorithms much faster for interesting N ≥ 8

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  2  4  6  8

C
P
U

 t
im

e
 e

la
p

se
d
 [

s]

Number of input operand bits (N)

naïve addition
fast addition

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  2  4  6  8

C
P
U

 t
im

e
 e

la
p

se
d
 [

s]

Number of input operand bits (N)

naïve multiplication
fast multiplication

Figure 1: Measured computation times for 106 random abstract input
combinations.

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 15 / 18



Experimental evaluation: fast algorithms
Fast multiplication does not exhibit very noticeable quadratic
behaviour for random inputs
Fast addition extremely fast, fast multiplication still above 100kOps

s
for N = 32

 0

 1

 2

 3

 4

 5

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32

C
P
U

 t
im

e
 e

la
p

se
d

 [
s]

Number of input operand bits (N)

fast addition
fast multiplication

Figure 2: Measured computation time for 106 random abstract input
combinations, fast algorithms only.

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 16 / 18



Experimental evaluation: dependence on the number of
unknown bits

Fast multiplication speed exhibits clear dependence
Input combinations with no unknown bits are easier
With many unknown bits, there is a high probability of multiple
double-unknown k-th column pairs, implying r̂k = ‘X’

 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32

C
P
U

 t
im

e
 e

la
p

se
d

 [
s]

Number of unknown bits
in each input

fast addition
fast multiplication

Figure 3: Measured computation times for 106 random abstract input
combinations with fixed N = 32, while the number of unknown bits in each input
varies.

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 17 / 18



Conclusion

Generalized resolution of bitwise operations in three-valued logic
to a forward operation problem

Devised a novel modular extreme-finding technique for best
abstract transformer construction and proven its correctness

Best abstract transformer algorithms found: Θ(N) addition,
worst-case Θ(N2) multiplication, implemented, working well

Easily generalized to subtraction and general summation

Future work:

▶ usage in actual model checker
▶ division and remainder
▶ operation fusing
▶ general operation problem

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 18 / 18



Conclusion

Generalized resolution of bitwise operations in three-valued logic
to a forward operation problem

Devised a novel modular extreme-finding technique for best
abstract transformer construction and proven its correctness

Best abstract transformer algorithms found: Θ(N) addition,
worst-case Θ(N2) multiplication, implemented, working well

Easily generalized to subtraction and general summation

Future work:

▶ usage in actual model checker
▶ division and remainder
▶ operation fusing
▶ general operation problem

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 18 / 18



Conclusion

Generalized resolution of bitwise operations in three-valued logic
to a forward operation problem

Devised a novel modular extreme-finding technique for best
abstract transformer construction and proven its correctness

Best abstract transformer algorithms found: Θ(N) addition,
worst-case Θ(N2) multiplication, implemented, working well

Easily generalized to subtraction and general summation

Future work:

▶ usage in actual model checker
▶ division and remainder
▶ operation fusing
▶ general operation problem

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 18 / 18



Conclusion

Generalized resolution of bitwise operations in three-valued logic
to a forward operation problem

Devised a novel modular extreme-finding technique for best
abstract transformer construction and proven its correctness

Best abstract transformer algorithms found: Θ(N) addition,
worst-case Θ(N2) multiplication, implemented, working well

Easily generalized to subtraction and general summation

Future work:

▶ usage in actual model checker
▶ division and remainder
▶ operation fusing
▶ general operation problem

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 18 / 18



Conclusion

Generalized resolution of bitwise operations in three-valued logic
to a forward operation problem

Devised a novel modular extreme-finding technique for best
abstract transformer construction and proven its correctness

Best abstract transformer algorithms found: Θ(N) addition,
worst-case Θ(N2) multiplication, implemented, working well

Easily generalized to subtraction and general summation

Future work:
▶ usage in actual model checker

▶ division and remainder
▶ operation fusing
▶ general operation problem

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 18 / 18



Conclusion

Generalized resolution of bitwise operations in three-valued logic
to a forward operation problem

Devised a novel modular extreme-finding technique for best
abstract transformer construction and proven its correctness

Best abstract transformer algorithms found: Θ(N) addition,
worst-case Θ(N2) multiplication, implemented, working well

Easily generalized to subtraction and general summation

Future work:
▶ usage in actual model checker
▶ division and remainder

▶ operation fusing
▶ general operation problem

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 18 / 18



Conclusion

Generalized resolution of bitwise operations in three-valued logic
to a forward operation problem

Devised a novel modular extreme-finding technique for best
abstract transformer construction and proven its correctness

Best abstract transformer algorithms found: Θ(N) addition,
worst-case Θ(N2) multiplication, implemented, working well

Easily generalized to subtraction and general summation

Future work:
▶ usage in actual model checker
▶ division and remainder
▶ operation fusing

▶ general operation problem

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 18 / 18



Conclusion

Generalized resolution of bitwise operations in three-valued logic
to a forward operation problem

Devised a novel modular extreme-finding technique for best
abstract transformer construction and proven its correctness

Best abstract transformer algorithms found: Θ(N) addition,
worst-case Θ(N2) multiplication, implemented, working well

Easily generalized to subtraction and general summation

Future work:
▶ usage in actual model checker
▶ division and remainder
▶ operation fusing
▶ general operation problem

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 18 / 18


