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Introduction

Three-valued abstraction = abstract bits can have value ‘0’, ‘1’, or
‘X’ (possibly 0, possibly 1)

How to generate a single three-valued bit-vector operation
output for arithmetic operations quickly, with best results?

For example, getting the best result r̂best for â+ b̂:

â = “X0”, b̂ = “11”

a = 002, b = 112, r = 0112 = 002 + 112

a = 102, b = 112, r = 1012 = 102 + 112

r̂best = “XX1”

Can the best result be obtained in polynomial time?

Let’s go back to our motivation and formalization first...
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Motivation

Formally verifying conventional digital processor machine code:
movement + bitwise logic + wrap-around arithmetic + branching

Explicit state space generation, trying to avoid exponential explosion
→ we want a single result

Focusing on forward direction, no backtracking

Movement + bitwise logic can be performed in linear time (standard
Kleene three-valued logic)3

Wrap-around arithmetic: operation results can be precomputed for
8-bit inputs (stored using BDDs), infeasible for larger inputs4

3T. Reinbacher, M. Horauer, and B. Schlich. “Using 3-valued memory representation
for state space reduction in embedded assembly code model checking”. In: 2009 12th
International Symposium on Design and Diagnostics of Electronic Circuits Systems.
2009, pp. 114–119. doi: 10/dhg4ww.

4John Regehr and Alastair Reid. “HOIST: A System for Automatically Deriving
Static Analyzers for Embedded Systems”. In: SIGOPS Oper. Syst. Rev. 38.5 (Oct.
2004), pp. 133–143. issn: 0163-5980. doi: 10/fjcx9w.
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Formalization of three-valued bit-vectors

Abstract bit values formalized as

‘0’ := {0}, ‘1’ := {1}, ‘X’ := {0, 1} (1)

Abstract bit-vectors: tuples of abstract bits, IEEE 1164 notation5:
“XX10” = (‘X’, ‘X’, ‘1’, ‘0’) = ({0, 1}, {0, 1}, {1}, {0})
Concretization function for abstract bit vectors:

γ(â) = {a | ∀i ∈ {0, . . . ,N − 1} . ai ∈ âi}. (2)

Example: γ(“XX10”) = {00102, 01102, 10102, 11102}

5Institute of Electrical and Electronics Engineers. “IEEE Standard Multivalue Logic
System for VHDL Model Interoperability (Std logic 1164)”. In: IEEE Std 1164-1993
(1993), pp. 1–24. doi: 10/bhz6s9.
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Forward operation problem (simplified definitions)

Forward operation problem: for a given binary operator
r : BN × BN → BM , and abstract inputs â, b̂, find r̂ such that

∀a ∈ γ(â) . b ∈ γ(b̂) . ∃c ∈ γ(r̂) . c = r(a, b) (3)

Best abstract transformer : minimizes |γ(r̂)|, näıve computation
in Θ(22N) time, example â+ b̂ (just with actual possibilities):

â = “X0”, b̂ = “11”

a = 002, b = 112, r = 0112 = 002 + 112

a = 102, b = 112, r = 1012 = 102 + 112

r̂best = “XX1”

Back to our question: Can the best result be obtained in
polynomial time?
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∀a ∈ γ(â) . b ∈ γ(b̂) . ∃c ∈ γ(r̂) . c = r(a, b) (3)

Best abstract transformer : minimizes |γ(r̂)|, näıve computation
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Our results
Assuming every input/output bit-vector fits in the machine word of a
traditional processor performing verification,

Theoretical result 1: Fast abstract addition

The best abstract transformer of abstract bit-vector addition is
computable in linear time.

Theoretical result 2: Fast abstract multiplication

The best abstract transformer of abstract bit-vector multiplication is
computable in worst-case quadratic time.

Experimental evaluation results

Fast algorithms can be computed above 100kOps
s for N = 32, while näıve

computation is practically infeasible for N > 8. Memory is a non-issue,
only a small fixed amount of temporary variables is needed.
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Obtaining fast algorithms: pseudo-Boolean reinterpretation

Reinterpret the concrete operation function r as a pseudo-Boolean
operation function h : BN × BN → N0

Use new functions (hk)
M−1
k=0 , each congruent with h modulo 2k+1

Equivalent best abstract transformer formula:

∀k ∈ {0, . . . ,M − 1} .

(0 ∈ r̂bestk ⇔ ∃a ∈ γ(â), b ∈ γ(b̂) . (hk(a, b) mod 2k+1) < 2k) ∧
(1 ∈ r̂bestk ⇔ ∃a ∈ γ(â), b ∈ γ(b̂) . (hk(a, b) mod 2k+1) ≥ 2k)

(4)

Visualisation of hk inequalities for a single bit k:
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Modular extreme-finding technique

Step size = absolute change of pseudo-Boolean function value when
one bit is flipped

Restrict hk to step size at most 2k , consider the previous modular
inequalities

Reaching minimum and maximum in the exact same area ⇒ only one
holds (‘0’/‘1’)

Otherwise, both of them hold (‘X’)

We now only need to find the extremes to get the best result!
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Fast abstract addition

For addition,

h+(a, b) =

(
N−1∑
i=0

2iai

)
+

N−1∑
j=0

2jbj

 (5)

To ensure each hk is congruent with h and every step is at most 2k ,

h+k (a, b)
def
=

(
k∑

i=0

2iai

)
+

 k∑
j=0

2jbj

 (6)

Finding minimum and maximum in linear time is trivial

Directly leads to the fast algorithm

Similar for subtraction and summation with multiple independent
operands
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Fast abstract addition: example 1/2

Example “X0” + “11”, k = 0:
▶ h+0 = “0”+ “1”
▶ min h+0 = 0012
▶ max h+0 = 0012

Visualisation:

min h0=1
max h0=1

0 2-1 1 3-2

h0(a,b)<1 (mod 2) h0(a,b)≥1 (mod 2)

⌊min h+0
1 ⌋ = ⌊max h+0

1 ⌋ → r̂best0 = {⌊min h+0
1 ⌋ mod 2} = ‘1’
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Fast abstract addition: example 2/2

Example “X0” + “11”, k = 1:
▶ h+1 = “X0”+ “11”
▶ min h+0 = 0012
▶ max h+0 = 0112

Visualisation:

0 4-2 2 6-4

h0(a,b)<1 (mod 2) h0(a,b)≥1 (mod 2)

min h1=1 max h1=3

⌊min h+0
2 ⌋ ≠ ⌊max h+0

2 ⌋ → r̂best1 = ‘X’
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Fast abstract multiplication: first non-best approach

First idea: performing multiplication via summation (long
multiplication)

Does not result in best abstract transformer

Counterexample “11” · “X1”:
(23) (22) (21) (20)

1 1
· b1 1

(b1) (b1) b1 1
b1 1

b1 2b1 1 + b1 1

Best result “X0X1”, long multiplication produces “XXX1” due
to the interaction of b1 with itself

N = 8: 15,9% results unnecessarily overapproximated
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Fast abstract multiplication: finding hk
Multiplication pseudo-Boolean operation function:

h∗(a, b) =
N∑
i=0

N−i∑
j=0

2i+jaibj (7)

Just removing summands divisible by 2k+1 does not work as step
size is at most 2k+1 − 1:

hk(a, b) =
k∑

i=0

k−i∑
j=0

2i+jaibj (8)

Flipping the sign of 2k coefficients, the step size is at most 2k :

h∗k(a, b)
def
=

(
−

k∑
i=0

2kaibk−i

)
+

k−1∑
i=0

k−i−1∑
j=0

2i+jaibj

 (9)
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Just removing summands divisible by 2k+1 does not work as step
size is at most 2k+1 − 1:

hk(a, b) =
k∑

i=0

k−i∑
j=0

2i+jaibj (8)

Flipping the sign of 2k coefficients, the step size is at most 2k :

h∗k(a, b)
def
=

(
−

k∑
i=0

2kaibk−i

)
+

k−1∑
i=0

k−i−1∑
j=0

2i+jaibj

 (9)

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 13 / 18



Fast abstract multiplication: finding hk
Multiplication pseudo-Boolean operation function:

h∗(a, b) =
N∑
i=0

N−i∑
j=0

2i+jaibj (7)

Just removing summands divisible by 2k+1 does not work as step
size is at most 2k+1 − 1:

hk(a, b) =
k∑

i=0

k−i∑
j=0

2i+jaibj (8)

Flipping the sign of 2k coefficients, the step size is at most 2k :

h∗k(a, b)
def
=

(
−

k∑
i=0

2kaibk−i

)
+

k−1∑
i=0

k−i−1∑
j=0

2i+jaibj

 (9)

J. Onderka and S. Ratschan Fast Three-Valued Bit-Vector Arithmetic 2022-01-18 13 / 18



Fast abstract multiplication: finding extremes

We have defined h∗k as

h∗k(a, b) =

(
−

k∑
i=0

2kaibk−i

)
+

k−1∑
i=0

k−i−1∑
j=0

2i+jaibj

 (10)

Now depends on values of variables forming summands 2kaibk−i

At least two of them with both abstract bits ‘X’ (double-unknown
k-th column pairs): we have proven that they imply r̂bestk = ‘X’

Otherwise, single-unknown k-th column pairs can be
minimized/maximized

The one possibly remaining double-unknown k-th column pair with
both abstract bits ‘X’ can be resolved as a special case afterwards

Best abstract transformer with worst-case time complexity Θ(N2)
▶ main problem: h∗k cannot be computed with standard multiplication

instruction
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Experimental evaluation
Our C++ implementation (conference artifact) available on figshare
under CC0 licence

Computationally verified equivalence of näıve and fast algorithms
for N ≤ 9
Fast algorithms much faster for interesting N ≥ 8
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Figure 1: Measured computation times for 106 random abstract input
combinations.
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Experimental evaluation: fast algorithms
Fast multiplication does not exhibit very noticeable quadratic
behaviour for random inputs
Fast addition extremely fast, fast multiplication still above 100kOps

s
for N = 32
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Figure 2: Measured computation time for 106 random abstract input
combinations, fast algorithms only.
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Experimental evaluation: dependence on the number of
unknown bits

Fast multiplication speed exhibits clear dependence
Input combinations with no unknown bits are easier
With many unknown bits, there is a high probability of multiple
double-unknown k-th column pairs, implying r̂k = ‘X’
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Figure 3: Measured computation times for 106 random abstract input
combinations with fixed N = 32, while the number of unknown bits in each input
varies.
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Conclusion

Generalized resolution of bitwise operations in three-valued logic
to a forward operation problem

Devised a novel modular extreme-finding technique for best
abstract transformer construction and proven its correctness

Best abstract transformer algorithms found: Θ(N) addition,
worst-case Θ(N2) multiplication, implemented, working well

Easily generalized to subtraction and general summation

Future work:

▶ usage in actual model checker
▶ division and remainder
▶ operation fusing
▶ general operation problem
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