
A
va
ila

bl
e Functio

n
al

VMCAI’26
Artifact
Evaluated

Input-based
Three-Valued Abstraction Refinement

Jan Onderka1,2,3 and Stefan Ratschan2

1 Faculty of Engineering, University of Freiburg
Freiburg, Germany

onderka@cs.uni-freiburg.de
2 Institute of Computer Science, The Czech Academy of Sciences

Prague, Czech Republic
stefan.ratschan@cs.cas.cz

3 Faculty of Information Technology, Czech Technical University in Prague
Prague, Czech Republic

Abstract Unlike Counterexample-Guided Abstraction Refinement (CE-
GAR), Three-Valued Abstraction Refinement (TVAR) is able to verify
all properties of the µ-calculus. We present a novel algorithmic framework
for TVAR that employs a simulator-like approach to build and refine the
abstract state space with input-based splitting. This leads to a state space
formalism that is much simpler than in previous TVAR frameworks, which
use modal transitions. We implemented the framework in our open-source
tool machine-check and verified properties of machine-code systems for
the AVR architecture, showing the ability to verify systems and µ-calculus
properties not verifiable by naïve model checking or CEGAR, respectively.
This is the first practical use of TVAR for machine-code verification.

Keywords: Model checking · Abstraction · Partial Kripke Structure · µ-calculus

1 Introduction

Abstraction-refinement methodologies are ubiquitous in formal verification, the
foremost being Counterexample-guided Abstraction Refinement (CEGAR) [8,10].
Unfortunately, CEGAR does not support the whole propositional µ-calculus, and
indeed not even Computation Tree Logic (CTL). This leaves a large class of po-
tentially crucial non-linear-time properties unverifiable. Three-valued Abstraction
Refinement (TVAR) is able to verify full µ-calculus. However, previous TVAR
frameworks refined abstract states, necessitating state space formalisms based
on modal transitions. Frameworks based on simple formalisms [19, 47] are not
monotone: previously provable properties may no longer be provable after refine-
ment. Intricate monotone formalisms [28,48,52] were devised, their specialised
semantics complicating the use of standard model-checking algorithms.

Another problem common to model-checking with abstraction is that the
abstract state space cannot be built using a system simulator, which is possible
for naïve explicit-state model checking [45]. This is a problem especially with
complex systems such as processors executing machine code.

https://doi.org/10.5281/zenodo.17167265
https://orcid.org/0000-0003-2069-8584
https://orcid.org/0000-0003-1710-1513


2 J. Onderka and S. Ratschan

Contribution. Combining the ideas of TVAR and system simulators, we present
a novel TVAR framework based on simulator-like generation of the abstract state
space and performing refinements by splitting abstract inputs. Our framework
does not use modal transitions, leading to simpler and more intuitive reasoning
compared to the previous frameworks. Furthermore, it allows simple building and
refinement of the abstract state space based on abstract simulators. We prove
that the introduced framework is sound, monotone, and complete for µ-calculus
properties and existential abstraction domains, provided simple requirements
are met. Arbitrary digital systems formalised as automata can be verified, and
the choices of abstraction domains and refinement strategy can be tailored to
the specific use-case. Unlike the previous abstract-simulator approaches, our
framework can be used for the full µ-calculus.

We implemented an instance of our framework in our formal verification
tool machine-check4, where the systems are described as simulable finite-state
machines in a subset of the Rust language, translated to abstract and refinement
analogues used for generating and refining the state space [38]. The ability to
refine removes the need for hints such as where to use abstraction [25].

We designed machine-check especially for machine-code verification, and
were able to verify non-toy programs for the AVR architecture and find a bug
in a simplified version of a real-life program using a non-linear-time property
not verifiable by CEGAR. To our knowledge, this is the first use of TVAR and
verification of µ-calculus properties for machine-code systems.

2 Previous Work

In this section, we list previous relevant work on TVAR in roughly chronological
order, with additional information available in summarising papers [15,18]. After
that, we discuss relevant work on abstract simulator approaches to model checking.

Example 1. Consider the finite-state machine in Figure 1, representing e.g. a
controller of aircraft landing gear retraction: if the most significant bit (msb)
of the state is 0, the landing gear is extended; if 1, it is retracted. The system
is required to follow a single-bit input from the gear lever, with some slack for
responses. There is a critical bug, occurring if the aircraft loses power in flight
when the landing gear is retracted and the controller restarts in the state 000
after regaining power: as the input is set to retraction (1), the controller proceeds
through 011 to states where msb remains 1 forever, a total loss of capability
to extend the gear again unless the controller is turned off and on again.

The bug is not just dangerous, but also sneaky, as it does not occur during a
normal start with lever input 0. To protect ourselves against it, we can verify the
property “from every reachable system state, it should be possible to reach a state
where the landing gear is extended” holds in the system. This is formalised by a
recovery property AG[EF[¬msb]] in CTL, not possible to check using CEGAR.
4 Free and open-source, official website https://machine-check.org/. In this paper, we

discuss version 0.6.1 published at https://crates.io/crates/machine-check/0.6.1.

https://machine-check.org/
https://crates.io/crates/machine-check/0.6.1


Input-based Three-Valued Abstraction Refinement 3

000start 001

011

010

111

110

100 101

0

1

0,1

0,1

1
0

0

10

1

0,1

0,1

Figure 1. Example system expressed as a finite-state machine. The states where ¬msb
holds are drawn green while the states where msb holds are drawn orange.

Since the system is buggy, the property should be disproved5. For clarity, we
will instead reason about proving a dual property, EF[AG[msb]], i.e. from the
start state, there exists a path (E) where from some state on the path (F), all
paths (A) have every state (G) fulfilling msb. We will prove this on Figure 1
bottom-up as usual for CTL. Clearly, msb holds in the state 101. Since 101 just
loops on itself, AG[msb] holds in it. As 101 is reachable from 000 by the path
(000, 011, 111, 100, 101), we conclude EF[AG[msb]] holds, finding the bug. While
such reasoning is easy for simple systems, in real life, the controller may have
billions of possible states, requiring us to abstract some information away6.

Partial Kripke Structures (PKS). In verification on partial state spaces [1],
some information is disregarded to produce a smaller state space. PKS enrich
standard Kripke structures (KS) by allowing unknown state labellings.

Definition 1. A partial Kripke structure (PKS) is a tuple (S, S0, R, L) over a
set of atomic propositions A with the elements

– S (the set of states),
– S0 ⊆ S (the set of initial states),
– R ⊆ S × S (the transition relation),
– L : S ×A → {0, 1,⊥} indicating for each atomic proposition whether it holds,

does not hold, or its truth value is unknown (the labelling function).

A Kripke Structure (KS) is a PKS with L restricted to S × A → {0, 1}.

Example 2. While Figure 1 shows a finite-state machine, it can be converted
to a Kripke structure by discarding the inputs, with S = {000, 001, . . . , 111},
S0 = {000}, and R given by the transitions in Figure 1. L labels msb in states
{000, 001, 010, 011} as 0, and in {100, 101, 110, 111} as 1.

For proving EF[AG[msb]], such a KS is unnecessarily detailed. Using PKS,
we could e.g. combine 010 and 110 into a single abstract state where it is unknown
what the value of the most significant bit is, and the labelling of msb is ⊥.

5 In our terminology, proving the property determines it holds in the system. Disproving
it determines it does not. Verification aims to either prove or disprove it.

6 The example is directly inspired by a bug we found, discussed in Section 5.



4 J. Onderka and S. Ratschan

Existential abstraction. In TVAR, existential abstraction [9] is used, where
the abstract states in set Ŝ are related to the original concrete states in S by
a function γ : Ŝ → 2S , the abstract state ŝ ∈ Ŝ representing some (not fixed)
concrete state in s ∈ γ(ŝ) in each system execution instant. This is a generalisation
of domains usable for Abstract Interpretation [11,12], also allowing non-lattice
domains such as wrap-around intervals [16].

Example 3. In the examples, we will use the three-valued bit-vector domain,
where each element is a tuple of three-valued bits, each with value ‘0’ (definitely
0), ‘1’ (definitely 1), or ‘X’ (possibly 0, possibly 1). Except for figures, we write
three-valued bit-vectors in quotes, e.g. γ(“0X1”) = {001, 011}. The bits can also
refer to a predicate rather than a specific value. For example, ‘1’ could mean that
v > 5 holds, ‘0’ that its negation holds, and ‘X’ that we do not know.

2.1 Previous TVAR Frameworks

Building on the work of Bruns & Godefroid [1,2,3], Godefroid et al. [19] introduced
TVAR by refining the abstract state set, using a state space formalism based
on modal transitions. Early TVAR approaches [19,20,22,23,47] were based on
Kripke Modal Transition Structures (KMTS) and did not guarantee previously
provable properties stay provable after refinement, i.e. were not monotone.

Definition 2. A Kripke Modal Transition Structure (KMTS) is a five-tuple
(S, S0, R

may, Rmust, L) where S, S0, and L follow Definition 1, and

– Rmay ⊆ S × S is the set of transitions which may be present,
– Rmust ⊆ Rmay is the set of transitions which are definitely present.

Intuitively, KMTS allow for transitions with unknown presence (Rmay \Rmust).
PKS can be trivially converted to KMTS by setting Rmay = Rmust = R. While
it is possible to convert a KMTS to an equally expressive PKS by moving the
transition presence into the states [21], this requires the set of states to be
modified.

Monotone frameworks. Godefroid et al. recognised non-monotonicity as a
problem and suggested keeping previous states when refining [19, p. 3-4]. However,
Shoham & Grumberg showed the approach was not sufficient, since in certain
cases, it prevents verification of additional properties after refinement. As a
remedy, they introduced another monotone TVAR framework using Generalized
KMTS for CTL [48], later extended to µ-calculus [49]. Gurfinkel & Chechik
introduced a framework for verification of CTL properties on Boolean programs
using Mixed Transition Systems [28], later extended to lattice-based domains [30]7.
7 An instance of the framework is implemented in the tool Yasm [29], available online

at the time of writing [26]. However, it does not support common programming
language elements such as bitwise-operation statements (for example, y = x & 1) nor
full µ-calculus, which our tool can handle without problems.



Input-based Three-Valued Abstraction Refinement 5

XXXstart

(a) Only state “XXX”.

0XXstart 1XX

(b) KMTS after refining (a).

0XXstart 1XX

XXX

(c) MixTS after refining (a).

0XXstart 1XX

(d) GKMTS after refin-
ing (a).

0XXstart 11X

10X

(e) GKMTS after refining
“1XX” in (d).

000start 001

011

010

111

110

10X

(f) GKMTS after refining “0XX” in (e) by
splitting to “000”, “001”, “010”, and “011”.

Figure 2. State-based refinement with hyper-transitions based on Generalised KMTS.
Implied may-transitions, present in all sub-figures except for (c), are not drawn. The
states where it is unknown whether msb or ¬msb holds are drawn grey.

Wei et al. introduced a TVAR framework using Reduced Inductive Semantics for
µ-calculus under which the results of model-checking GKMTS and MixTS are
equivalent [52].

Definition 3. A Generalized KMTS (GKMTS) is a tuple (S, S0, R
may, Rmust, L)

where S, S0, R
may, and L follow Definition 2 and Rmust : S × 2S is the set of

hyper-transitions, where ∀(a,B) ∈ Rmust . ∀b ∈ B . (a, b) ∈ Rmay.

Definition 4. A Mixed Transition System (MixTS) is a tuple (S, S0, R
may,

Rmust, L) where S, S0, R
may, and L follow Definition 2 and Rmust ⊆ S × S.

Example 4. We will prove EF[AG[msb]] using the previous state-based TVAR
frameworks over the system from Figure 1, starting with abstract state set
{“XXX”}. Clearly, we both may and must transition from “XXX” to “XXX”,
visualised in Figure 2a. Since msb is unknown in “XXX”, the model-checking
result is unknown and we refine.

Suppose we decide to refine by splitting the abstract state set to {“0XX”,
“1XX”}, starting in “0XX”. From “0XX”, we may transition either to “0XX” (e.g.
by 000 → 001 or 010 → 010) or “1XX” (e.g. by 010 → 110), but cannot conclude
that e.g. a transition from “0XX” to itself must exist: 011 ∈ γ(“0XX”) only
transitions to 111 ̸∈ γ(“0XX”).

PKS cannot be used as they cannot describe unknown-presence transitions.
KMTS allow this, producing Figure 2b. However, it is not possible to prove e.g.
EX[true], which was possible in Figure 2a, i.e. the refinement is not monotone.
Using MixTS, we retain “XXX” and the must-transitions to it, producing a forced
choice in Figure 2c. Using GKMTS, we obtain Figure 2d instead. In both, it
is possible to prove EX[true], but not EF[AG[msb]]. Refining further using
GKMTS, we obtain Figure 2e, where it is still not possible to prove EF[AG[msb]]:



6 J. Onderka and S. Ratschan

the hyper-transitions do not imply that the path (“0XX”,“11X”,“10X”) corresponds
to a concrete path. The property is only proven after additional refinement to
Figure 2f. While the GKMTS in Figure 2f trivially corresponds to a KMTS or a
PKS, fewer refinements and final states may be needed in general when using
GKMTS or MixTS as they may guide the refinement better due to monotonicity.

Model checking. µ-calculus properties can be model-checked on PKS and
KMTS by a simple conversion to two KS, applying standard model-checking
algorithms, and combining the results [2,20]. Similar conversions are also possible
for multi-valued logics [27, 31]. It is also possible to model-check directly without
conversion. A multi-valued model-checker was previously used for the MixTS
approach [28]. Game-based model-checking was used for full µ-calculus [22,23].

Discussion of previous TVAR frameworks. It was recognised early on that
using KMTS with non-monotone refinement is problematic [19,47]. GKMTS seem
more susceptible to exponential explosion as MixTS can make use of abstract
domains. However, specialised algorithms must be used for MixTS to obtain
GKMTS-equivalent results [52]. A drawback of all mentioned approaches is their
conceptual complexity which, in our opinion, is the main reason for the dearth of
available TVAR tools and test sets, compared to CEGAR. This has also made
the analysis of these methods difficult, as illustrated by the subtle differences in
definitions of expressiveness identified by Gazda & Willemse [17].

2.2 Abstract Simulator Approaches

Naïve explicit-state model checking generates a next state from every state
and input combination, with the ability to use a system simulator to perform
each step. This simulator can be written in an imperative language such as C.
Unfortunately, for machine-code systems where state sizes are in kilobytes even
for simple microcontrollers and a single port read can produce e.g. 28 next states,
this results in exponential explosion for all but the simplest toy programs. We
will now discuss approaches where the state space is abstract, but still built by
generating the next states using an abstract simulator.

Trajectory Evaluation. Bryant used three-valued logic simulators for formal
verification of hardware circuits [4,6]. He showed linear-time properties (expressed
by specification machines or circuit assertions) can be proven using a set of
three-valued input sequences that together cover all concrete inputs [4, p. 320]
by generating permissible state sequences (trajectories). Symbolic trajectory
evaluation (STE) is an extension that allows parametrisation of the introduced
trajectory formulas [5]. However, the STE formalism drops the distinction between
inputs and states. We refer to Melham [32] for a discussion of STE and extensions.
Notably, Generalized STE [53] allows verification of properties corresponding
to linear-time µ-calculus [14]. While manual refinement was originally needed,
automatic refinement was proposed for both STE [51] and GSTE [7].



Input-based Three-Valued Abstraction Refinement 7

Delayed Nondeterminism. Noll & Schlich [36] verified machine-code programs
by model-checking an abstract state space generated by a simulation-based
approach. Each input bit was read as ‘X’ and split to ‘0’ and ‘1’ only when
it was decided to in a subsequent step (e.g. if it was an argument of a branch
instruction). This allowed e.g. splitting only one bit of a read 8-bit port if the
other bits were masked out by a constant first, allowing soundly proving (but
not disproving) properties in path-universal logics such as LTL and ACTL.

000start 0X1 X1X XXX

(a) Abstract state space corresponding to the system in Figure 1,
computed by simulation with unconstrained inputs (‘X’)

000Case 1. system 001 010 X10

00
Xspecification 01

X
10
1

11
X

000Case 2. system 011 111 10X

00
Xspecification 01

X
10
1

11
X

0 X X

0 X X

1 X X

1 X X

(b) Trajectory evaluation: The verification is split into cases, ensuring the abstract
input sequences together cover all possible concrete input sequences. Unlike
Bryant, we use initial states for consistency with other approaches.

000start 0X1 010

111

X10

10X

d.001

d.011

(c) Delayed nondeterminism augmented with must-transitions: the ‘X’ in state
“0X1” is split to ‘0’ and ‘1’ before computing the successor

Figure 3. Simulation-based approaches proving A[X[X[msb ⇔ lsb]]]. (a) can be con-
sidered PKS or KMTS, and (c) KMTS. (b) contains four trajectories. Specially in this
figure, system states are drawn green if msb⇔ lsb holds, orange if it does not, and grey
if it is unknown. Specification states are coloured according to the output.

Example 5. Due to the restrictions of the approaches, we will illustrate proving the
property “in two steps from the initial state, the most significant bit corresponds
to the least significant bit”, i.e. A[X[X[msb ⇔ lsb]]]. Simulating without splitting,
we produce Figure 3a, unable to prove the property.

To visualise Bryant’s trajectory evaluation approach with explicitly considered
inputs [4], we encode the specification as a finite-state machine with two bits
containing an initially-zero saturating counter. The system output function is
msb ⇔ lsb. The specification outputs ‘1’ iff the counter is 10 and ‘X’ otherwise.
To prove the property, we split verification into two cases based on the value of
the first input, and obtain simulated trajectories of both machines in Figure 3b.



8 J. Onderka and S. Ratschan

The property is proven as the trajectories are long enough (at least 3 for the
given property) and the specification output always covers the system output.

To better understand Delayed Nondeterminism, we augment with must-
transitions where possible. Splitting “0X1” from Figure 3a, we obtain Figure
3c, where “010” is obtained as a direct successor of “001”, and “111” as a direct
successor of “011”. We cannot augment during the split as ‘X’ might not generally
correspond to a unique input, potentially e.g. being copied before splitting.

3 Input-based Three-Valued Abstraction Refinement

We propose a framework that eliminates the need for modal transitions in TVAR
by combining ideas from the discussed approaches: using TVAR, build the abstract
state space using an abstract simulator and split inputs instead of states.

000start 001

011

010

111

X10

10X

0

1

X

X

X

X

X

X

(a) Refining the input after “000” while keeping
all others ‘X’.

000start XXX

011 111 10X

0

1 X X

X

X

(b) A smaller reachable state space using a decayed
step function.

Figure 4. Input-based Three-Valued Abstraction Refinement.

Example 6. We return to the original problem of proving EF[AG[msb]]. The
simulation-based approach initially builds the abstract state space as shown
in Figure 3a. After that, we decide (using e.g. a heuristic, machine learning or
human guidance) that the input after “000” should be split. We regenerate the
abstract state space as shown in Figure 4a. We are immediately able to prove
EF[AG[msb]] holds, meaning the system from Figure 1 contains a bug.

The part of the abstract state space in Figure 4a starting with “001” is
unnecessarily large for proving the property, potentially causing exponential
explosion problems. To prevent them, we also introduce a way to soundly and
precisely regulate the outgoing states of transitions, allowing us to e.g. replace
“001” by “XXX” as in Figure 4b when generating the abstract state space, decaying
to less information. Only one refinement was necessary compared to multiple
in Example 4, with the final state space in Figure 4b smaller than in Figure 2f.
However, this depends8 on the correct choice to decay “001” and not “011”.

The generated state spaces are PKS, which allows us to use previous work on
PKS, KMTS, GKMTS, and MixTS, as PKS are trivially convertible to all. This
notably includes model-checking using standard formalisms [2, 20] and TVAR
8 As with other frameworks, verification performance depends drastically on abstraction,

refinement, and implementation choices, further discussed in Sections 4 and 5.



Input-based Three-Valued Abstraction Refinement 9

refinement guidance [22, 23, 47], with the caveat that we need to select an input
instead of a state to refine. Unlike (G)STE [5,53] and Delayed Nondeterminism [36]
which were limited to linear-time or path-universal properties, our approach can
be used for the full µ-calculus. Verification can be fully automatic or manually
guided, and it is also possible to precisely control the number of reachable abstract
states and transitions: we can split inputs up to one by one, and decay any newly
reachable states before refining the applied decay.

We will now give the framework formalism and simple requirements for its
instances to be sound, monotone, and complete. In Section 4, we will then discuss
how reasonable choices of refinements can be made. Finally, in Section 5, we will
evaluate an implementation of an instance of our framework in machine-check.

3.1 Framework Formalism

We assume that the original Kripke Structure has only one initial state9, i.e.
K = (S, {s0}, R, L). We write the result of model-checking a property ϕ against
K as JϕK(K), which returns 0 or 1. For a PKS K̂, JϕK(K̂) returns 0, 1, or ⊥.

We consider the original (concrete) system to be an automaton and will also
use automata for abstracting the system, introducing the formalism of generating
automata that can generate partial Kripke structures.

Definition 5. A generating automaton (GA) is a tuple G = (S, s0, I, q, f, L)
with the elements

– S (the set of automaton states),
– s0 ∈ S (the initial state),
– I (the set of all step inputs),
– q : S → 2I \ {∅} (the input qualification function),
– f : S × I → S (the step function),
– L : S × A → {0, 1,⊥} (the labelling function).

Definition 6. For a generating automaton (S, s0, I, q, f, L), we define the PKS-
generating function Γ as

Γ ((S, s0, I, q, f, L))
def
= (S, {s0}, R, L) (1)

where R = {(s, f(s, i)) | s ∈ S, i ∈ q(s)}. (2)

We call a generating automaton G = (S, s0, I, q, f, L) concrete if the labelling
function L : S ×A → {0, 1} (disallowing the value ⊥) and for all s ∈ S, q(s) = I.
A concrete GA corresponds to a Moore machine with the output of each state
mapping each atomic proposition from A to either 0 or 1.

Algorithm 1 describes our framework. Given a concrete GA, it abstracts it to
an abstract generating automaton (Ŝ, ŝ0, Î, q̂, f̂ , L̂), successively refining the input
qualification function q̂ and step function f̂ until the result of model-checking
9 This is merely a formal choice. For multiple initial states, a dummy initial state can

be introduced before them and the verified property ϕ converted to AX[ϕ].



10 J. Onderka and S. Ratschan

Algorithm 1 Input-based Three-Valued Abstraction Refinement Framework

Require: a concrete generating automaton (S, s0, I, q, f, L), a µ-calculus property ϕ
Ensure: return JϕK((S, s0, I, q, f, L)) ▷ If requirements are fulfilled, see Corollary 1

(Ŝ, ŝ0, Î, q̂, f̂ , L̂)← Abstract(S, s0, I, q, f, L)
while (r ← JϕK(Γ ((Ŝ, ŝ0, Î, q̂, f̂ , L̂))) = ⊥ do

(q̂, f̂)← Refine(Ŝ, ŝ0, Î, q̂, f̂ , L̂)
end while
return r

is non-⊥. Ŝ and Î are related to S and I by a state concretization function10

γ : Ŝ → 2S \ {∅} and an input concretization function ζ : Î → 2I \ {∅}.
Unlike state-based TVAR, the set of abstract states Ŝ does not change during

refinement. The number of states to be considered is limited by the codomain
of f̂ , allowing structures such as Binary Decision Diagrams to be used. The
abstract state space can be built quickly by forward simulation. For backward
simulation, care must be taken to pair the states according to inputs.

Example 7. In machine-check, states and inputs are composed of bit-vector
and bit-vector-array variables, formally represented by flattened S = {0, 1}w
and I = {0, 1}y for finite state width w and finite input width y. A dummy s0
precedes the actual initial system states, f is a function written in an imperative
programming language, and L computes relational operations on state variables.

For the abstract GA, we use three-valued bit-vector abstraction [36, 45] with
fast abstract operations [40], abstracting as

γbit(â) = {v ∈ B | (v = 0 ⇒ a ̸= ‘1’) ∧ (v = 1 ⇒ a ̸= ‘0’)}, (3a)

Ŝ = {‘0’, ‘1’, ‘X’}w, γ(ŝ) = {s ∈ S | ∀k ∈ [0, w − 1] . sk ∈ γbit(ŝk)}, (3b)

Î = {‘0’, ‘1’, ‘X’}y, ζ (̂i) = {i ∈ I | ∀k ∈ [0, y − 1] . ik ∈ γbit(̂ik)}. (3c)

Again, ŝ0 is a dummy state with γ(ŝ0) = {s0}. We rewrite the step function f

into an abstract function f̂basic : Ŝ × Î → Ŝ. To formalise the manipulation in
Figure 4, we use an input precision function p̂q̂ : Ŝ → {0, 1}y and a step precision
function p̂f̂ : Ŝ → {0, 1}w, defining the result of q̂ and f̂ in each bit k by

(p̂q̂(ŝ)k = 0 ⇒ q̂(ŝ)k = {‘X’}) ∧ (p̂q̂(ŝ)k = 1 ⇒ q̂(ŝ)k = {‘0’, ‘1’}), (4a)

(p̂f̂ (ŝ)k = 0 ⇒ f̂(ŝ, î)k = ‘X’) ∧ (p̂f̂ (ŝ)k = 1 ⇒ f̂(ŝ, î)k = f̂basic(ŝ, î)k). (4b)

This allows precise control of the size of the reachable abstract state space. For
each ŝ ∈ Ŝ, if p̂q̂(ŝ) = (0)y, there is exactly one outgoing transition. Each bit
set to 1 increases that up to a factor of 2. If p̂f̂ (ŝ) = (0)w, there is exactly one
outgoing transition to the “most-decayed” state (‘X’)w.
10 We forbid abstract elements with no concretizations as they do not represent any

concrete element. Practically speaking, this does not disqualify abstract domains
with such elements; we just require such elements are not produced by ŝ0, q̂, or f̂ .



Input-based Three-Valued Abstraction Refinement 11

3.2 Soundness, Monotonicity, and Completeness

In this subsection, we state the requirements sufficient to ensure soundness (the
algorithm returns the correct result if it terminates), monotonicity (refinements
never lose any information), and completeness (the algorithm always terminates).
For reasons of space, we only sketch the proofs in this version of the paper11.

To intuitively describe the requirements, we formalise the concept of coverage.
An abstract state ŝ or input î covers a concrete s ∈ S or i ∈ I exactly when
s ∈ γ(ŝ) or i ∈ ζ (̂i), respectively, and it covers another abstract state ŝ∗ ∈ Ŝ or
input î∗ ∈ Î exactly when γ(ŝ∗) ⊆ γ(ŝ) or ζ (̂i∗) ⊆ ζ (̂i), respectively.

We want abstraction to preserve the truth value of µ-calculus properties in
the following sense:

Definition 7. A partial Kripke structure K↑ is sound with respect to a partial
Kripke structure K↓ if, for every property ϕ of µ-calculus over the set of atomic
propositions A, it holds that

JϕK(K↑) ̸= ⊥ ⇒ JϕK(K↓) = JϕK(K↑). (5)

Intuitively, K↑ can contain less information than K↓, turning some non-⊥
proposition results to ⊥. No other differences are possible.

To ensure the soundness of Algorithm 1, we use the following requirements.
Soundness is ensured with any refinement heuristic as long as they are met.

Definition 8. A GA Ĝ = (Ŝ, ŝ0, Î , q̂, f̂ , L̂) is a soundness-guaranteeing (γ, ζ)-
abstraction of a concrete GA G = (S, s0, I, q, f, L) iff

γ(ŝ0) = {s0}, (6a)

∀ŝ ∈ Ŝ . ∀s ∈ γ(ŝ) . ∀a ∈ A . (L̂(ŝ, a) ̸= ⊥ ⇒ L̂(ŝ, a) = L(s, a)), (6b)

∀(ŝ, i) ∈ Ŝ × I . ∃î ∈ q̂(ŝ) . i ∈ ζ (̂i), (6c)

∀(ŝ, î) ∈ Ŝ × Î . ∀(s, i) ∈ γ(ŝ)× ζ (̂i) . f(s, i) ∈ γ(f̂(ŝ, î)). (6d)

Informally, the four requirements express the following:

(a) Initial state concretization. The abstract initial state has exactly the
concrete initial state in its concretization.

(b) Labelling soundness. Each abstract state labelling must either correspond
to the labelling of all concrete states it covers or be unknown.

(c) Full input coverage. In every abstract state, each concrete input must be
covered by some qualified abstract input.

(d) Step soundness. Each result of the abstract step function must cover all
results of the concrete step function where its arguments are covered by the
abstract step function arguments.

The requirements ensure the soundness of the used abstractions as follows.
11 The full proofs are given in Appendix A in a version of this paper available at

https://arxiv.org/abs/2408.12668.

https://arxiv.org/abs/2408.12668


12 J. Onderka and S. Ratschan

Theorem 1 (Soundness). For every generating automaton Ĝ and concrete
generating automaton G, state concretization function γ, and input concretization
function ζ such that Ĝ is a soundness-guaranteeing (γ, ζ)-abstraction of G, the
partial Kripke structure Γ (Ĝ) is sound with respect to Γ (G).

Proof sketch. Show that {(s, ŝ) | ŝ ∈ Ŝ ∧ s ∈ γ(ŝ)} is a modal simulation [15,
p. 408] from Γ (G) to Γ (Ĝ) due to (6). Then, Ĝ is sound wrt. G due to a previous
theorem on preservation of µ-calculus formulas [15, p. 410].

Corollary 1. Assume that the functions Abstract and Refine ensure that
the generating automaton (Ŝ, ŝ0, Î, q̂, f̂ , L̂) in Algorithm 1 is always a soundness-
guaranteeing (γ, ζ)-abstraction of (S, s0, I, q, f, L). Then, if the algorithm termin-
ates, its result is correct.

Example 8. Continuing from Example 7, (6a) is fulfilled trivially. (6c) is fulfilled
due to (3c) and (4a). From (4b), it is apparent that

∀(ŝ, î) ∈ (Ŝ, Î) . γ(f̂basic(ŝ, î)) ⊆ γ(f̂(ŝ, î)), (7)

i.e. results of f̂ cover results of f̂basic that abstracts f . We carefully implemented
the translation of f to f̂basic and L̂ so that(6b) and (6d) hold.

Next, we turn to monotonicity, which ensures no algorithm loop iteration
loses information. We give the requirements for the refinement to guarantee it.

Definition 9. A generating automaton (Ŝ, ŝ0, Î, q̂, f̂ , L̂) is monotone wrt. (γ, ζ)-
coverage iff

∀(ŝ, ŝ′, a) ∈ Ŝ × Ŝ ×A .

((γ(ŝ′) ⊆ γ(ŝ) ∧ L̂(ŝ, a) ̸= ⊥) ⇒ L̂(ŝ′, a) = L̂(ŝ, a)),
(8a)

∀(ŝ, ŝ′, î, î′) ∈ Ŝ × Ŝ × Î × Î .

((γ(ŝ′)× ζ (̂i′) ⊆ γ(ŝ)× ζ (̂i)) ⇒ γ(f̂(ŝ′, î′)) ⊆ γ(f̂(ŝ, î)).
(8b)

Informally, we require that each abstract state covered by an abstract state
with non-⊥ labelling has the same labelling, and when abstract step function
arguments are covered by some other arguments, its result is also covered by the
result computed using the other arguments.

Definition 10. The generating automaton (Ŝ, ŝ0, Î, q̂
′, f̂ ′, L̂) is a (γ, ζ)-monotone

refinement of the generating automaton (Ŝ, ŝ0, Î, q̂, f̂ , L̂) iff it is monotone wrt.
(γ, ζ)-coverage and

∀ŝ ∈ Ŝ . ∀î′ ∈ q̂′(ŝ) . ∃î ∈ q̂(ŝ) . ζ (̂i′) ⊆ ζ (̂i), (9a)

∀ŝ ∈ Ŝ . ∀î ∈ q̂(ŝ) . ∃î′ ∈ q̂′(ŝ) . ζ (̂i′) ⊆ ζ (̂i), (9b)

∀(ŝ, î) ∈ Ŝ × Î . γ(f̂ ′(ŝ, î)) ⊆ γ(f̂(ŝ, î)). (9c)

Informally, in addition to the monotonicity wrt. coverage, we also require:



Input-based Three-Valued Abstraction Refinement 13

(a) New qualified inputs are not spurious. Each new qualified input is
covered by at least one old qualified input.

(b) Old qualified inputs are not lost. Each old qualified input covers at least
one new qualified input.

(c) New step function covered by old. The result of the new step function
is always covered by the result of the old step function.

The need for both quantifier combinations in the first two requirements in
Equation 9 may be surprising. Their violations correspond to transition addition
and removal, respectively, which could make a previously non-⊥ property ⊥.

Theorem 2 (Monotonicity). If the generating automaton Ĝ′ is a (γ, ζ)-mono-
tone refinement of the generating automaton Ĝ, then for every µ-calculus property
ψ for which JψK(Γ (Ĝ)) ̸= ⊥, it also holds JψK(Γ (Ĝ′)) ̸= ⊥.

Proof sketch. Show that {(ŝ′, ŝ) | ŝ′ ∈ Ŝ′ ∧ s ∈ S)} is a modal simulation [15,
p. 408] from Γ (Ĝ′) to Γ (Ĝ) due to (8) and (9). Then, Ĝ is sound wrt. Ĝ′ due to
a previous theorem on preservation of µ-calculus formulas [15, p. 410].

Corollary 2. If the update in the loop of Algorithm 1 performs a (γ, ζ)-monotone
refinement of the generating automaton (Ŝ, ŝ0, q̂, f̂ , L̂) and for a µ-calculus prop-
erty ψ, it held that JψK(Γ ((Ŝ, ŝ0, q̂, f̂ , L̂))) ̸= ⊥ before the loop iteration, then this
is also the case after the iteration.

Now we turn to termination. We use the following requirements to ensure
that the algorithm makes progress.

Definition 11. The generating automaton (Ŝ, ŝ0, Î, q̂
′, f̂ ′, L̂) is a strictly (γ, ζ)-

monotone refinement of the generating automaton (Ŝ, ŝ0, Î, q̂, f̂ , L̂) if it is a
monotone refinement and either

∃ŝ ∈ Ŝ . ∃î ∈ q̂(ŝ) . ∀î′ ∈ q̂′(ŝ) . ∃i ∈ ζ (̂i) . i ̸∈ ζ (̂i′), (10)

or ∃(ŝ, î) ∈ Ŝ × Î . ∃s ∈ γ(f̂(ŝ, î)) . s ̸∈ γ(f̂ ′(ŝ, î)). (11)

Informally, progress in monotone refinements is ensured either by an abstract
state where some old qualified input is not fully covered by any new qualified
input or by an abstract state-input combination where the old step function
result has at least one concretization absent in the new result concretizations.

Example 9. Continuing from Example 8, during each refinement, we set at least
one bit of p̂q̂ and/or p̂f̂ to 1, and prohibit resetting them to 0, fulfilling (9). We
implemented L̂ so that (8a) holds. (8b) holds due to (4b). As setting bits in p̂f̂
does not necessarily mean f̂ changes, we set them until R in Γ (Ĝ) changes. This
means q̂ or f̂ change as per (10) or (11), and the refinement is strictly monotone.

Theorem 3 (Completeness). If Ŝ and Î are finite, there is no infinite sequence
of generating automata that are soundness-guaranteeing (γ, ζ)-abstractions of
some G such that all subsequent pairs in the sequence are strictly (γ, ζ)-monotone
refinements.



14 J. Onderka and S. Ratschan

Proof sketch. Assume such a sequence exists. For each sequence element Ĝ, define
a function MĜ(ŝ) = ({ζ (̂i) | î ∈ q̂Ĝ(ŝ)}, {(̂i ∈ Î , γ(f̂Ĝ(ŝ, î)))}). Show that MĜ

must be different for different sequence elements. As there is only a finite number
of different functions MĜ, the sequence cannot be infinite.

Corollary 3. If Ŝ, Î are finite, the functions Abstract and Refine in Al-
gorithm 1 ensure that (Ŝ, ŝ0, Î, q̂, f̂ , L̂) always is a soundness-guaranteeing (γ, ζ)-
abstraction of (S, s0, I, q, f, L), and calls of Refine perform strict (γ, ζ)-mono-
tone refinements, then the algorithm returns the correct result in finite time.

Fulfilling the requirements of Corollary 3 is not trivial. We must exclude the
situation when no strict (γ, ζ)-monotone refinement is possible any more while a
non-⊥ result has not yet been reached. We propose Lemma 1 for easier reasoning.

Definition 12. A generating automaton Ĝ = (Ŝ, ŝ0, Î, q̂, f̂ , L̂) is (γ, ζ)-termi-
nating wrt. a concrete generating automaton G = (S, s0, I, q, f, L) if it is a
(γ, ζ)-abstraction of G monotone wrt. (γ, ζ)-coverage and

∀(s, ŝ) ∈ S × Ŝ . (γ(ŝ) = {s} ⇒ L̂(ŝ) = L(s)), (12a)

∀ŝ ∈ Ŝ . ∀î ∈ q̂(ŝ) . ∃i ∈ I . ζ (̂i) = {i}, (12b)

∀ŝ ∈ Ŝ . ∀i ∈ I . ∃î ∈ q̂(ŝ) . ζ (̂i) = {i}, (12c)

∀(ŝ, î, s, i)∈ Ŝ× Î×S×I.((γ(ŝ), ζ (̂i))=({s}, {i}) ⇒ γ(f̂(ŝ, î))={f(s, i)}). (12d)

Informally, (12a) requires that each abstract state with a single concretization
has the same labelling as the corresponding concrete state. (12b) requires that
every qualified abstract input has a single concretization, while (12c) requires
that every concrete input corresponds to some qualified abstract input. (12d)
requires that the step function applied on single-concretization abstract state-
input combinations produces the correct single-concretization result.

Lemma 1. If Ĝ is (γ, ζ)-terminating wrt. G, then for every µ-calculus property ψ,
JψK(Γ (Ĝ))=JψK(Γ (G)). Furthermore, if Ĝ is a soundness-guaranteeing (γ, ζ)-
abstraction of G for which some (γ, ζ)-monotone refinement is (γ, ζ)-terminating
wrt. G, then Ĝ itself is (γ, ζ)-terminating wrt. G or the refinement is strict.

Proof sketch. Show that {(ŝ, s) | ŝ ∈ Ŝ ∧ s ∈ γ(ŝ)} is a modal simulation from
Γ (Ĝ) to Γ (G) due to (6) and (12). As JϕK(Γ (G)) ̸= ⊥, JψK(Γ (Ĝ)) = JψK(Γ (G)).
Then, consider that if the Ĝ in the second part is not (γ, ζ)-terminating, at least
one of (12a), (12b), (12c), (12d) does not hold for Ĝ. Show on a case-by-case basis
this is a contradiction for (12a) and forces the refinement to be strict otherwise.

Corollary 4. If every generating automaton constructed in Algorithm 1 fulfils
the conditions of Lemma 1, calls to Refine can always perform a strict (γ, ζ)-
monotone refinement to a soundness-guaranteeing (γ, ζ)-abstraction.

Example 10. Continuing from Example 9, we implemented L̂, f̂basic so that they
fulfil (12a) and (12d). Since (12b) and (12c) hold due to (4a), Ĝ∗ obtained by
p̂q̂ = (1)y, p̂f̂ = (1)w is (γ, ζ)-terminating. Inspecting (9), Ĝ∗ is monotone wrt. all
other applicable GA, and Corollary 4 holds. As soundness was already ensured
in Example 8 and Ŝ, Î are finite by definition, Corollary 3 holds.



Input-based Three-Valued Abstraction Refinement 15

4 Making Reasonable Refinement Choices

A sound, monotone, and complete instantiation of the framework can e.g. refine
randomly while fulfilling the requirements from Subsection 3.2. However, for fast
verification, refinements must be chosen carefully. We will discuss how reasonable
refinements can be made, inspired by the FindFailure algorithms to find the
cause of an unknown result of verification of CTL [48, p. 551-552] and game-based
verification of µ-calculus [23, p. 1145].

The goal is to find the root cause of an unknown verification result, an
unknown atomic labelling in an abstract state reached through the abstract state
space, which we will also call the culprit. For this, we extend the semantics of
three-valued µ-calculus on PKS, a simplification of three-valued µ-calculus on
KMTS [23,49], so that it returns the culprit instead of the unknown value ⊥. For
simplicity, we base this definition on the standard syntax of µ-calculus in positive
normal form. Assuming, in addition to the set of atomic labellings A, a set of
µ-calculus variables V, a formula then has the form

ϕ ::= a | ¬a | Z | ϕ ∧ ϕ | ϕ ∨ ϕ | ⟨ϕ⟩ | [ϕ] | µZ . ϕ | νZ .ϕ (13)

where a ∈ A, Z ∈ V. The language of µ-calculus then consists of all closed-form
formulas given by this definition. We also assume variables are well-bound, i.e.
every variable must be bound by µ or ν exactly once.

Definition 13. Given a GA Ĝ = (Ŝ, ŝ0, Î, q̂, f̂ , L̂), an environment is a function
ρ : V → (Ŝ → ({0, 1} ∪ C)), where C is the set of pairs (S, a) with S being a
non-empty sequence of states from Ŝ and a ∈ A an atomic labelling.

Now let R̂ be the transition relation of the PKS Γ (Ĝ). We define the exten-
ded semantics of µ-calculus recursively according to its syntax such that for an
environment ρ and a state ŝ ∈ Ŝ,

JaKρŝ ::=

{
L̂(ŝ, a) if L̂(ŝ, a) ̸= ⊥,
((ŝ), a) otherwise,

J¬aKρŝ ::=

{
1− L̂(ŝ, a) if L̂(ŝ, a) ̸= ⊥,
((ŝ), a) otherwise,

Jϕ ∧ ψKρŝ ::=


1 if JϕKρŝ = 1 and JψKρŝ = 1,

0 if JϕKρŝ = 0 or JψKρŝ = 0,

c ∈ C s.t. c = JϕKρŝ or c = JψKρŝ otherwise,

J⟨ϕ⟩Kρŝ ::=


1, if there is a ŝ+ with (ŝ, ŝ+) ∈ R̂ and JϕKρŝ+ = 1,

0, if for all ŝ+, (ŝ, ŝ+) ∈ R̂ implies JϕKρŝ+ = 0,

((ŝ, ŝ1, . . . ), a) s.t. (ŝ, ŝ1) ∈ R̂ and JϕKρŝ1 = ((ŝ1, . . . ), a), otherwise,

JZKρŝ ::= ρ(Z)(ŝ), JµZ . ϕKρŝ ::= lfp(λg . JϕKρ[Z 7→g]
ŝ ).

The least fixed point lfp is defined as usual for the ordering 0 < ⊥ < 1,
but retains the element of C previously obtained when the environmental value
remains ⊥ between subsequent iterations of fixed-point computation. The operators
ϕ ∨ ϕ, [ϕ], and νZ .ϕ are defined correspondingly to their duals.



16 J. Onderka and S. Ratschan

As already mentioned, in the case where the result is an element of C, we will
call it the culprit. The definition is not unique, allowing implementation choice
of which culprit to use for refinement. With any choice, the culprit describes
a path through the state space ending with a labelling that contributes to the
verification result JϕKŝ0 being unknown.

Using the culprit for refinement. If the instance of our framework fulfils the
conditions from Corollary 3 then there clearly is at least one application of f̂ on
the culprit’s path that makes the subsequent state cover more than one state,
since γ(ŝ0) = {s0} and (12a) forbids spuriously unknown labellings. As such, we
can decide to only refine f̂ from the preceding ŝ of such applications. This avoids
refinements that definitely would not impact any culprit, unnecessarily increasing
the size of the abstract state space. This idea can be extended to the instance
details, not refining e.g. inputs that provably do not have an impact on the culprit
labelling. The choice of culprit and actual refinement can be fine-tuned according
to the typical systems under verification in order to achieve good performance.

Example 11. In machine-check, we model-check and obtain the culprit in the
spirit of the above discussion. To ensure deterministic behaviour, we prefer the
left culprit for operators ϕ ∧ ϕ, ϕ ∨ ϕ and the culprit continuing with the state
with the smallest unique identification number for next-state operators ⟨ϕ⟩, [ϕ].

For better performance, we use incremental model-checking where we construct
a history of environment updates and only update a part of the history after
refinement, if possible. To avoid storing the elements of C, where paths can be
problematically long, we instead store the evaluation choices made to obtain
the given history point from previous history points and atomic labellings. This
allows us to reconstruct the culprit if necessary by walking back through history.

After obtaining the culprit ((ŝ0, ŝ1, . . . , ŝn−1, ŝn), a), we compute a cone of
influence on a being unknown in ŝn. For each state ŝ ∈ {ŝ0, ŝ1, . . . , ŝn−1}, we
determine candidate bit positions k ∈ [0, y−1] where p̂q̂(ŝ)k = 0 and it is possible
this has contributed to a being unknown in ŝn, and likewise for k ∈ [0, w−1] where
p̂f̂ (ŝ)k = 0. We then choose the state in which to refine p̂f or p̂q deterministically
based on the following heuristic:

– If there are candidate bits for refinement of p̂f , we choose to refine p̂f in the
last state on the culprit path where there is some candidate.

– Otherwise, we pre-select only the states containing candidates that have the
highest level of indirection (indirection rises for indices to array reads and
writes that impact the culprit labelling). We then choose to refine p̂q using
the candidates on the last pre-selected state on the culprit path.

From multiple candidate bits for the refinement in the chosen state, we choose
the input variable deterministically. From multiple bit candidates in a bit-vector
variable, we refine the most significant bit.



Input-based Three-Valued Abstraction Refinement 17

5 Implementation and Experimental Evaluation

We implemented an instance of our proposed framework in our free and open-
source tool machine-check. In this section, we discuss our implementation
choices and show that our framework is able to mitigate exponential explosion.

5.1 Implementation

Our focus is verification of machine-code systems, where the system is composed
of a processor and a machine-code program it executes. However, there is no
special handling for typical features of machine-code systems such as the Program
Counter, call stack, etc., allowing machine-check to support verification of
arbitrary finite-state digital systems against properties in propositional µ-calculus.

Systems. Systems to be verified are described in a subset of the Rust pro-
gramming language. The systems can be comprised of bit-vectors that support
standard arithmetical, logical, shift, and extension operations and bit-vector
arrays that support indexing.

Properties. Properties are described in a Rust-style format that allows µ-
calculus and Computation Tree Logic properties to be expressed. Atomic pro-
positions are formed by equality and comparison operations between variables
of the system. CTL and µ-calculus can be freely mixed, and CTL operators are
converted to µ-calculus before model-checking. For example, the CTL property
AG[value = 0] is translated to νZ.(value = 0) ∧ [Z].

Translating the systems. The system description, corresponding to the con-
crete GA under verification, is compiled together with machine-check core to
form the system verifier, and the description is automatically translated [38]
to representations that serve as an abstract simulator and a cone-of-influence
calculator. No other interaction between the system and framework is needed.

Abstraction. Three-valued bit-vector abstraction is used for bit-vectors, with
fast abstract operations [40]. Arrays are abstracted using a version of sparse
representation where elements that are not stored have the value of the nearest
stored element with a lesser index.

Building the state space. The state space is built incrementally using the
abstract analogue of the system as the abstract simulator. Abstract state data
and a sparse transition graph are retained throughout verification, with garbage
collection of abstract states that are no longer reachable.



18 J. Onderka and S. Ratschan

Model-checking. As noted in Example 11, we use incremental model-checking
of µ-calculus. For reassurance, once the final verification result is obtained, it is
double-checked non-incrementally.

Verification settings. With default verification settings, inputs are initially
unknown but decay is not used, i.e. p̂q̂(ŝ) = (0)y−1

k=0, p̂f̂ (ŝ) = (1)w−1
k=0 from all

states ŝ ∈ Ŝ. It is possible to enable decay ubiquitously, i.e. p̂f̂ (ŝ) = (0)w−1
k=0 ,

but we found this to be slower for machine-code systems due to the need to
refine each generated state. A naïve strategy with p̂q̂(ŝ) = (1)y−1

k=0 corresponding
to explicit-state verification without abstraction would immediately result in
hopeless explosion of the state space due to the amount of initially uninitialised
memory and read inputs in machine code systems.

5.2 Evaluation Setup

We evaluated verification of µ-calculus properties on machine-code systems for the
AVR ATmega328P microcontroller that we described for use in machine-check
according to the datasheet [33] and instruction set reference [34].

Benchmark set. As we are not aware of any publicly available and appropriately
licensed benchmark sets for formal verification of embedded 8-bit microcontrol-
lers, we used our own set of benchmarks based on machine-code programs for
ATmega328P. Our set of benchmarks currently contains 16 programs: 6 programs
where we expect a violation of some system-inherent property (e.g. forbidden
instruction), 5 simple programs, and 5 more complicated programs, four of which
are variations of a simplified version of a program for calibration of a Voltage-
Controlled Oscillator used in real life. For C programs, we benchmark the machine
code obtained with debug and release builds separately.

Setup. The evaluation was performed on a Linux machine with an Intel Core
i9-12900 processor with 128 GB of RAM. The tool was built with Rust 1.83.0 in
release configuration. The default verification strategy was used.

Evaluated properties. We evaluated up to 8 properties on each program12.
Using w for a propositional formula on atomic properties that varies depending
on the program, the properties included, among others:

– Inherent property defined in the processor description, determining if a system
with given machine-code is permissible, containing no calls to unimplemented
instructions, peripherals, etc. AG[w], i.e. a safety property.

12 To ensure the implementation is not faulty, we also test the properties on simple
non-machine-code systems in our test suite, e.g. whether the verifier distinguishes
between AFG[w] and AF[AG[w]] using the standard example [41, p. 65].



Input-based Three-Valued Abstraction Refinement 19

– Recovery property (as discussed in Example 1), checking whether the system
can be recovered from every reachable state to the program loop start with
initial output values. AG[EF[w]] in CTL. Not a linear-time property.

– Program counter (PC) remains within the main program loop in the main
function infinitely often on all paths. FG[w] in LTL, µX . νY . [X]∨ (w∧ [Y ])
in µ-calculus [13, p. 3133]. Not present in CTL.

– PC is never at the start of the main loop during even times (wrt. instructions).
νX . w ∧ [ [X] ] in µ-calculus, not present in CTL, LTL, nor CTL*.

– The stack pointer stays above a given value, preventing stack overflow prob-
lems. AG[w], i.e. a safety property.

5.3 Evaluation Results

We performed 126 measurements in total on the evaluated machine-code systems
and properties, all of which resulted in the property being verified. All results
matched our expectations. We will discuss a limited number of the more interesting
measurements in detail, demonstrating the applicability of the framework.

Calibration. We used a simplified version of a program for calibration of a
Voltage-Controlled Oscillator (VCO) using binary search. We previously used
the program in a real device, where the VCO frequency was adjusted by a
digital potentiometer based on the measured frequency of the produced wave.
For verification, we replaced the interactions with the digital potentiometer and
frequency measure by I/O writes and reads, leaving the core algorithm unchanged.

Verifying using machine-check, we found a bug in the program using the
recovery property: the output value could never recover to zero after an iteration
concludes, since the least significant bit was never set to zero during the calibration,
causing a calibration precision loss. This bug would have been tricky to find using
source-code verification, as the problem occurred in peripheral manipulation.
Linear-time properties of forms F[w] or FG[w] would not find the bug, as the
calibration command may never be given. After fixing the bug, the recovery
property holds, as seen in Table 1.

Despite only the simple three-valued bit-vector abstraction used, the final sizes
of abstract state spaces are reasonable. The refinement guidance is remarkably
well-behaved, arriving at the same state space for the properties where a fast
decision was not possible, despite the non-inherent properties having no knowledge
about e.g. illegal instructions. Verification using the infinitely-often property is
notably slow due to the need to model-check with non-trivial nested quantifiers,
but this slowdown is effectively mitigated by using the inherent property first.

To show Input-based TVAR holds up where explicit-state verification would be
completely infeasible, we created complicated calibration variants where a 64-bit
value is read during initialisation, and unrelated 8-bit volatile reads are performed
while doing the calibration, ensuring there are more than 280 concrete states even
if not considering uninitialised memory. As seen in Table 1, machine-check
verifies with at most approx. factor-of-4 slowdown.



20 J. Onderka and S. Ratschan

Table 1. Selected measurements of verification of the calibration program compiled in
debug configuration. Asterisks mark measurements where the inherent property was
verified first and verification of the given property progressed from that state space.

Variant Property name Holds Refin. States Transitions CPU t. [s] Mem. [MB]
Original Inherent ✓ 513 13059 13573 17.09 87.39
Original Recovery ✗ 513 13059 13573 19.88 111.34
Original Infinitely often ✓ 513 13059 13573 672.05 160.58
Original Infinitely often* ✓ 513 13059 13573 17.98 115.34
Original Even non-starts ✗ 0 17 18 <0.01 3.78
Original Stack above 0x08FD ✓ 513 13059 13573 17.08 87.30
Original Stack above 0x08FE ✗ 0 17 18 <0.01 3.94
Fixed Inherent ✓ 513 13059 13573 17.21 87.60
Fixed Recovery ✓ 513 13059 13573 29.16 112.02
Fixed Infinitely often ✓ 513 13059 13573 672.19 161.65
Fixed Infinitely often* ✓ 513 13059 13573 18.07 115.66
Fixed Even non-starts ✗ 0 17 18 <0.01 3.72
Fixed Stack above 0x08FD ✓ 513 13059 13573 17.2 87.56
Fixed Stack above 0x08FE ✗ 0 17 18 <0.01 3.98

Comp. orig. Inherent ✓ 771 17330 18102 54.43 125.83
Comp. orig. Recovery ✗ 770 17333 18104 65.28 159.20
Comp. orig. Infinitely often* ✓ 771 17330 18102 73.29 173.08
Comp. fixed Inherent ✓ 771 17330 18102 51.63 125.71
Comp. fixed Recovery ✓ 771 17330 18102 70.74 159.52
Comp. fixed Infinitely often* ✓ 771 17330 18102 64.2 173.04

Factorial. We implemented a program in C which computes the factorial of
an input recursively. In the compiled machine code, the computation remained
recursive in the debug build but was optimised to an iterative version in the
release build. We verified properties including maximal stack sizes for both
versions, as seen in Table 2. Regarding the state space size, we noticed that the
call return locations remain known even after the stack is popped and they are
no longer relevant, unnecessarily growing the state space. We believe a smarter,
selective decay of step precision could alleviate these problems.

Comparison with other tools. While there has been a multitude of previous
machine-code verifiers [39, p. 29-37], we are not aware of any that support full
µ-calculus. Our work has been inspired by the research on the tool [mc]square
/ Arcade.µC [24,36,37,42,45,46], which could use strategies including Delayed
Nondeterminism [36]. However, the tool has been discontinued and is not publicly
available. It only supported proving LTL/ACTL properties when abstraction
was used, and needed system-based hints for useful abstraction. As for more
recent work, verifiers based on theorem proving have been introduced, with the
Serval [35, 50] tool supporting automatic verification but not programs with
loops, and Islaris [43,44] requiring manual proof support but supporting loops.
Both only support verification of safety properties. In contrast, machine-check
supports fully automatic verification of µ-calculus properties on machine-code
programs that include loops thanks to the introduced framework.



Input-based Three-Valued Abstraction Refinement 21

Table 2. Selected measurements of verification of the factorial program. Everything
is as expected. The recovery property does not hold as the factorial program never
outputs zero after the first computation. The infinitely-often property does not hold
due to calls to another function from the main function affecting the Program Counter.
Program Property name Holds Refin. States Transitions CPU t. [s] Mem. [MB]

Debug Inherent ✓ 576 51595 52940 50.4 359.79

Debug Recovery ✗ 576 51595 52940 76.48 469.88

Debug Infinitely often ✗ 6 1396 1411 5.55 259.89

Debug Even non-starts ✓ 576 51595 52940 46.96 360.40

Debug Stack above 0x08DD ✓ 576 51595 52940 52.77 359.74

Debug Stack above 0x08DE ✗ 3 748 756 0.16 31.58

Release Inherent ✓ 45 4272 4378 0.78 46.84

Release Recovery ✗ 45 4272 4378 1.11 54.58

Release Infinitely often ✗ 6 1006 1021 2.93 148.15

Release Even non-starts ✗ 3 550 558 0.04 17.92

Release Stack above 0x08FB ✓ 45 4272 4378 0.78 46.79

Release Stack above 0x08FC ✗ 0 20 21 < 0.01 3.72

6 Conclusion

We presented a novel input-based Three-valued Abstraction Refinement (TVAR)
framework for formal verification of µ-calculus properties using abstraction re-
finement and gave requirements for soundness, monotonicity, and completeness.
Our framework can verify properties not verifiable using Counterexample-guided
Abstraction Refinement or (Generalized) Symbolic Trajectory Evaluation, elim-
inating verification blind spots. Compared to previous TVAR frameworks, our
framework does not use modal transitions, allowing monotonicity without formal-
ism complications. We implemented the framework in our tool machine-check,
which can verify machine-code systems while mitigating exponential explosion.

Acknowledgments. The work of Jan Onderka reported in this paper was
supported by an Amazon Research Award (Fall 2023) and Czech Technical
University in Prague grant SGS23/208/OHK3/3T/18. Development of machine-
check was supported by the NGI Zero Core fund established by NLnet Foundation.
The work of Stefan Ratschan was supported by the research programme of
the Strategy AV21 AI: Artificial Intelligence for Science and Society and by
institutional support RVO:67985807l.

Data Availability Statement. The artefact containing detailed results sum-
marised in Section 5 and reproduction data (including the benchmark set) is
available at https://doi.org/10.5281/zenodo.17167265.

https://doi.org/10.5281/zenodo.17167265


22 J. Onderka and S. Ratschan

References

1. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued temporal
logics. In: Halbwachs, N., Peled, D. (eds.) Proceedings on 11th International Con-
ference on Computer Aided Verification, CAV 1999. pp. 274–287. Springer Berlin
Heidelberg, Berlin, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6_25

2. Bruns, G., Godefroid, P.: Generalized model checking: Reasoning about partial state
spaces. In: Palamidessi, C. (ed.) Proceedings of the 11th International Conference
on Concurrency Theory, CONCUR 2000. pp. 168–182. Springer Berlin Heidelberg,
Berlin, Heidelberg (2000). https://doi.org/10.1007/3-540-44618-4_14

3. Bruns, G., Godefroid, P.: Temporal logic query checking. In: 16th Annual IEEE
Symposium on Logic in Computer Science, Boston, Massachusetts, USA, June
16-19, 2001, Proceedings. pp. 409–417. IEEE Computer Society (2001). https:
//doi.org/10.1109/LICS.2001.932516

4. Bryant, R.E.: A methodology for hardware verification based on logic simulation. J.
ACM 38(2), 299–328 (Apr 1991). https://doi.org/10.1145/103516.103519

5. Bryant, R.E., Seger, C.J.H.: Formal verification of digital circuits using symbolic
ternary system models. In: Clarke, E.M., Kurshan, R.P. (eds.) Computer-Aided
Verification. pp. 33–43. Springer Berlin Heidelberg, Berlin, Heidelberg (1991).
https://doi.org/10.1007/BFb0023717

6. Bryant, R.: Formal verification of memory circuits by switch-level simulation. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 10(1),
94–102 (1991). https://doi.org/10.1109/43.62795

7. Chen, Y., He, Y., Xie, F., Yang, J.: Automatic abstraction refinement for generalized
symbolic trajectory evaluation. In: Formal Methods in Computer-Aided Design,
7th International Conference, FMCAD 2007, Austin, Texas, USA, November 11-14,
2007, Proceedings. pp. 111–118. IEEE Computer Society (2007). https://doi.org/
10.1109/FAMCAD.2007.11

8. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) Proceedings of the
12th International Conference on Computer Aided Verification, CAV 2000. pp.
154–169. Springer Berlin Heidelberg, Berlin, Heidelberg (2000). https://doi.org/10.
1007/10722167_15

9. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16(5), 1512–1542 (Sep 1994). https://doi.org/10.1145/
186025.186051

10. Clarke, E., Gupta, A., Strichman, O.: SAT-based counterexample-guided abstraction
refinement. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 23(7), 1113–1123 (2004). https://doi.org/10.1109/TCAD.2004.829807

11. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. p. 238–252. POPL ’77, Association for Computing Machinery, New
York, NY, USA (1977). https://doi.org/10.1145/512950.512973

12. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL 1979. p. 269–282. Association for Computing
Machinery, New York, NY, USA (1979). https://doi.org/10.1145/567752.567778

13. Cranen, S., Groote, J.F., Reniers, M.A.: A linear translation from CTL* to the
first-order modal µ-calculus. Theor. Comput. Sci. 412(28), 3129–3139 (2011). https:
//doi.org/10.1016/J.TCS.2011.02.034

https://doi.org/10.1007/3-540-48683-6_25
https://doi.org/10.1007/3-540-48683-6_25
https://doi.org/10.1007/3-540-44618-4_14
https://doi.org/10.1007/3-540-44618-4_14
https://doi.org/10.1109/LICS.2001.932516
https://doi.org/10.1109/LICS.2001.932516
https://doi.org/10.1109/LICS.2001.932516
https://doi.org/10.1109/LICS.2001.932516
https://doi.org/10.1145/103516.103519
https://doi.org/10.1145/103516.103519
https://doi.org/10.1007/BFb0023717
https://doi.org/10.1007/BFb0023717
https://doi.org/10.1109/43.62795
https://doi.org/10.1109/43.62795
https://doi.org/10.1109/FAMCAD.2007.11
https://doi.org/10.1109/FAMCAD.2007.11
https://doi.org/10.1109/FAMCAD.2007.11
https://doi.org/10.1109/FAMCAD.2007.11
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1145/186025.186051
https://doi.org/10.1145/186025.186051
https://doi.org/10.1145/186025.186051
https://doi.org/10.1145/186025.186051
https://doi.org/10.1109/TCAD.2004.829807
https://doi.org/10.1109/TCAD.2004.829807
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/567752.567778
https://doi.org/10.1016/J.TCS.2011.02.034
https://doi.org/10.1016/J.TCS.2011.02.034
https://doi.org/10.1016/J.TCS.2011.02.034
https://doi.org/10.1016/J.TCS.2011.02.034


Input-based Three-Valued Abstraction Refinement 23

14. Dam, M.: Fixed points of Büchi automata. In: Shyamasundar, R. (ed.) Foundations
of Software Technology and Theoretical Computer Science. pp. 39–50. Springer
Berlin Heidelberg, Berlin, Heidelberg (1992). https://doi.org/10.1007/3-540-56287-
7_93

15. Dams, D., Grumberg, O.: Abstraction and abstraction refinement. In: Clarke, E.M.,
Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 385–
419. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-
3-319-10575-8_13

16. Gange, G., Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: Interval
analysis and machine arithmetic: Why signedness ignorance is bliss. ACM Trans.
Program. Lang. Syst. 37(1) (Jan 2015). https://doi.org/10.1145/2651360

17. Gazda, M., Willemse, T.A.: Expressiveness and completeness in abstraction.
Electronic Proceedings in Theoretical Computer Science 89, 49–64 (Aug 2012).
https://doi.org/10.4204/eptcs.89.5

18. Godefroid, P.: May/must abstraction-based software model checking for sound
verification and falsification. In: Grumberg, O., Seidl, H., Irlbeck, M. (eds.) Software
Systems Safety, NATO Science for Peace and Security Series, D: Information and
Communication Security, vol. 36, pp. 1–16. IOS Press (2014). https://doi.org/10.
3233/978-1-61499-385-8-1

19. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking using
modal transition systems. In: Larsen, K.G., Nielsen, M. (eds.) Proceedings of the
12th International Conference on Concurrency Theory, CONCUR 2001. pp. 426–440.
Springer Berlin Heidelberg, Berlin, Heidelberg (2001). https://doi.org/10.1007/3-
540-44685-0_29

20. Godefroid, P., Jagadeesan, R.: Automatic abstraction using generalized model
checking. In: Brinksma, E., Larsen, K.G. (eds.) Proceedings of the 14th International
Conference on Computer Aided Verification, CAV 2002. pp. 137–151. Springer Berlin
Heidelberg, Berlin, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_11

21. Godefroid, P., Jagadeesan, R.: On the expressiveness of 3-valued models. In: Zuck,
L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) Proceedings of the 4th Inter-
national Conference on Verification, Model Checking, and Abstract Interpretation,
VMCAI 2003. pp. 206–222. Springer Berlin Heidelberg, Berlin, Heidelberg (2003).
https://doi.org/10.1007/3-540-36384-X_18

22. Grumberg, O., Lange, M., Leucker, M., Shoham, S.: Don’t Know in the µ-calculus.
In: Cousot, R. (ed.) Proceeding of the 6th International Conference on Verification,
Model Checking, and Abstract Interpretation, VMCAI 2005. pp. 233–249. Springer
Berlin Heidelberg, Berlin, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
30579-8_16

23. Grumberg, O., Lange, M., Leucker, M., Shoham, S.: When not losing is better
than winning: Abstraction and refinement for the full µ-calculus. Information and
Computation 205(8), 1130–1148 (2007). https://doi.org/10.1016/j.ic.2006.10.009

24. Gückel, D.: Synthesis of State Space Generators for Model Checking Microcontroller
Code. Dissertation thesis, RWTH Aachen (November 2014), http://aib.informatik.
rwth-aachen.de/2014/2014-15.pdf

25. Gückel, D., Kowalewski, S.: Automatic Derivation of Abstract Semantics From
Instruction Set Descriptions. In: Brauer, J., Roveri, M., Tews, H. (eds.) 6th Interna-
tional Workshop on Systems Software Verification. Open Access Series in Informatics
(OASIcs), vol. 24, pp. 71–83. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2012). https://doi.org/10.4230/OASIcs.SSV.2011.71

26. Gurfinkel, A.: Yasm: Software model-checker, https://www.cs.toronto.edu/~arie/
yasm/, retrieved on 2025-01-17.

https://doi.org/10.1007/3-540-56287-7_93
https://doi.org/10.1007/3-540-56287-7_93
https://doi.org/10.1007/3-540-56287-7_93
https://doi.org/10.1007/3-540-56287-7_93
https://doi.org/10.1007/978-3-319-10575-8_13
https://doi.org/10.1007/978-3-319-10575-8_13
https://doi.org/10.1007/978-3-319-10575-8_13
https://doi.org/10.1007/978-3-319-10575-8_13
https://doi.org/10.1145/2651360
https://doi.org/10.1145/2651360
https://doi.org/10.4204/eptcs.89.5
https://doi.org/10.4204/eptcs.89.5
https://doi.org/10.3233/978-1-61499-385-8-1
https://doi.org/10.3233/978-1-61499-385-8-1
https://doi.org/10.3233/978-1-61499-385-8-1
https://doi.org/10.3233/978-1-61499-385-8-1
https://doi.org/10.1007/3-540-44685-0_29
https://doi.org/10.1007/3-540-44685-0_29
https://doi.org/10.1007/3-540-44685-0_29
https://doi.org/10.1007/3-540-44685-0_29
https://doi.org/10.1007/3-540-45657-0_11
https://doi.org/10.1007/3-540-45657-0_11
https://doi.org/10.1007/3-540-36384-X_18
https://doi.org/10.1007/3-540-36384-X_18
https://doi.org/10.1007/978-3-540-30579-8_16
https://doi.org/10.1007/978-3-540-30579-8_16
https://doi.org/10.1007/978-3-540-30579-8_16
https://doi.org/10.1007/978-3-540-30579-8_16
https://doi.org/10.1016/j.ic.2006.10.009
https://doi.org/10.1016/j.ic.2006.10.009
http://aib.informatik.rwth-aachen.de/2014/2014-15.pdf
http://aib.informatik.rwth-aachen.de/2014/2014-15.pdf
https://doi.org/10.4230/OASIcs.SSV.2011.71
https://doi.org/10.4230/OASIcs.SSV.2011.71
https://www.cs.toronto.edu/~arie/yasm/
https://www.cs.toronto.edu/~arie/yasm/


24 J. Onderka and S. Ratschan

27. Gurfinkel, A., Chechik, M.: Multi-valued model checking via classical model checking.
In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003 - Concurrency Theory. pp. 266–280.
Springer Berlin Heidelberg, Berlin, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45187-7_18

28. Gurfinkel, A., Chechik, M.: Why waste a perfectly good abstraction? In: Hermanns,
H., Palsberg, J. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems. pp. 212–226. Springer Berlin Heidelberg, Berlin, Heidelberg (2006).
https://doi.org/10.1007/11691372_14

29. Gurfinkel, A., Wei, O., Chechik, M.: Yasm: A software model-checker for verification
and refutation. In: Ball, T., Jones, R.B. (eds.) Computer Aided Verification. pp.
170–174. Springer Berlin Heidelberg, Berlin, Heidelberg (2006). https://doi.org/10.
1007/11817963_18

30. Gurfinkel, A., Wei, O., Chechik, M.: Model checking recursive programs with exact
predicate abstraction. In: Cha, S.S., Choi, J.Y., Kim, M., Lee, I., Viswanathan, M.
(eds.) Automated Technology for Verification and Analysis. pp. 95–110. Springer
Berlin Heidelberg, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
88387-6_9

31. Konikowska, B., Penczek, W.: Reducing model checking from multi-valued CTL*
to CTL*. In: Brim, L., Křetínský, M., Kučera, A., Jančar, P. (eds.) CONCUR 2002
— Concurrency Theory. pp. 226–239. Springer Berlin Heidelberg, Berlin, Heidelberg
(2002). https://doi.org/10.1007/3-540-45694-5_16

32. Melham, T.: Symbolic trajectory evaluation. In: Clarke, E.M., Henzinger, T.A.,
Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 831–870. Springer
International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-10575-
8_25

33. Microchip Technology Inc.: ATmega48A/PA/88A/PA/168A/PA/328/P Data Sheet
(October 2018), http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-
PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf, dS40002061A

34. Microchip Technology Inc.: AVR Instruction Set Manual (February 2021),
https://ww1.microchip.com/downloads/en/DeviceDoc/AVR-InstructionSet-
Manual-DS40002198.pdf, dS40002198B

35. Nelson, L., Bornholt, J., Gu, R., Baumann, A., Torlak, E., Wang, X.: Scaling
symbolic evaluation for automated verification of systems code with Serval. In:
Proceedings of the 27th ACM Symposium on Operating Systems Principles. p.
225–242. SOSP ’19, Association for Computing Machinery, New York, NY, USA
(2019). https://doi.org/10.1145/3341301.3359641

36. Noll, T., Schlich, B.: Delayed nondeterminism in model checking embedded systems
assembly code. In: Yorav, K. (ed.) Hardware and Software: Verification and Testing.
pp. 185–201. Springer Berlin Heidelberg, Berlin, Heidelberg (2008). https://doi.org/
10/b6jbwx

37. Noll, T., Schlich, B.: Delayed nondeterminism in model checking embedded sys-
tems assembly code. In: Yorav, K. (ed.) Proceedings of the 3rd Haifa Verification
Conference, HVC 2008. pp. 185–201. Springer Berlin Heidelberg, Berlin, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-77966-7_16

38. Onderka, J.: Formal verification of machine-code systems by translation of simulable
descriptions. In: Proceedings of the 13th Mediterranean Conference on Embedded
Computing, MECO 2024. pp. 1–4 (2024). https://doi.org/10.1109/MECO62516.
2024.10577942

39. Onderka, J.: Abstraction-Based Machine-Code Program Verification. Doctoral thesis,
Czech Technical University in Prague (2025), http://hdl.handle.net/10467/122640

https://doi.org/10.1007/978-3-540-45187-7_18
https://doi.org/10.1007/978-3-540-45187-7_18
https://doi.org/10.1007/978-3-540-45187-7_18
https://doi.org/10.1007/978-3-540-45187-7_18
https://doi.org/10.1007/11691372_14
https://doi.org/10.1007/11691372_14
https://doi.org/10.1007/11817963_18
https://doi.org/10.1007/11817963_18
https://doi.org/10.1007/11817963_18
https://doi.org/10.1007/11817963_18
https://doi.org/10.1007/978-3-540-88387-6_9
https://doi.org/10.1007/978-3-540-88387-6_9
https://doi.org/10.1007/978-3-540-88387-6_9
https://doi.org/10.1007/978-3-540-88387-6_9
https://doi.org/10.1007/3-540-45694-5_16
https://doi.org/10.1007/3-540-45694-5_16
https://doi.org/10.1007/978-3-319-10575-8_25
https://doi.org/10.1007/978-3-319-10575-8_25
https://doi.org/10.1007/978-3-319-10575-8_25
https://doi.org/10.1007/978-3-319-10575-8_25
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/AVR-InstructionSet-Manual-DS40002198.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/AVR-InstructionSet-Manual-DS40002198.pdf
https://doi.org/10.1145/3341301.3359641
https://doi.org/10.1145/3341301.3359641
https://doi.org/10/b6jbwx
https://doi.org/10/b6jbwx
https://doi.org/10/b6jbwx
https://doi.org/10/b6jbwx
https://doi.org/10.1007/978-3-540-77966-7_16
https://doi.org/10.1007/978-3-540-77966-7_16
https://doi.org/10.1109/MECO62516.2024.10577942
https://doi.org/10.1109/MECO62516.2024.10577942
https://doi.org/10.1109/MECO62516.2024.10577942
https://doi.org/10.1109/MECO62516.2024.10577942
http://hdl.handle.net/10467/122640


Input-based Three-Valued Abstraction Refinement 25

40. Onderka, J., Ratschan, S.: Fast three-valued abstract bit-vector arithmetic. In:
Finkbeiner, B., Wies, T. (eds.) Verification, Model Checking, and Abstract
Interpretation. pp. 242–262. Springer International Publishing, Cham (2022).
https://doi.org/10.1007/978-3-030-94583-1_12

41. Piterman, N., Pnueli, A.: Temporal logic and fair discrete systems. In: Clarke, E.M.,
Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp.
27–73. Springer International Publishing, Cham (2018). https://doi.org/10/qdm8

42. Reinbacher, T., Brauer, J., Horauer, M., Schlich, B.: Refining assembly code static
analysis for the Intel MCS-51 microcontroller. In: Proceedings of the Fourth IEEE
International Symposium on Industrial Embedded Systems, SIES 2009. pp. 161–170
(2009). https://doi.org/10.1109/SIES.2009.5196212

43. Rigorous Engineering of Mainstream Systems Project: Islaris: verification of machine
code against authoritative ISA semantics (2023), https://github.com/rems-project/
islaris, retrieved 2025-02-23.

44. Sammler, M., Hammond, A., Lepigre, R., Campbell, B., Pichon-Pharabod, J.,
Dreyer, D., Garg, D., Sewell, P.: Islaris: verification of machine code against authorit-
ative ISA semantics. In: Proceedings of the 43rd ACM SIGPLAN International Con-
ference on Programming Language Design and Implementation. p. 825–840. PLDI
2022, ACM, New York, NY, USA (2022). https://doi.org/10.1145/3519939.3523434

45. Schlich, B., Kowalewski, S.: [mc]square: A model checker for microcontroller code.
In: Proceedings of the Second International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation, ISOLA 2006. pp. 466–473 (2006).
https://doi.org/10.1109/ISoLA.2006.62

46. Schlich, B.: Model checking of software for microcontrollers. ACM Transactions on
Embedded Computing Systems 9(4) (April 2010). https://doi.org/10/bm83n7

47. Shoham, S., Grumberg, O.: A game-based framework for CTL counterexamples and
3-valued abstraction-refinement. In: Hunt, W.A., Somenzi, F. (eds.) Proceedings of
the 15th International Conference on Computer Aided Verification, CAV 2003. pp.
275–287. Springer Berlin Heidelberg, Berlin, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45069-6_28

48. Shoham, S., Grumberg, O.: Monotonic abstraction-refinement for CTL. In: Jensen,
K., Podelski, A. (eds.) Proceedings of the 10th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS 2004. pp. 546–560.
Springer Berlin Heidelberg, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24730-2_40

49. Shoham, S., Grumberg, O.: 3-valued abstraction: More precision at less cost. In-
formation and Computation 206(11), 1313–1333 (2008). https://doi.org/10.1016/j.
ic.2008.07.004

50. The UNSAT group: Serval (2019), https://unsat.cs.washington.edu/projects/
serval/, retrieved 2025-02-23.

51. Tzoref, R., Grumberg, O.: Automatic refinement and vacuity detection for symbolic
trajectory evaluation. In: Ball, T., Jones, R.B. (eds.) Computer Aided Verification.
pp. 190–204. Springer Berlin Heidelberg, Berlin, Heidelberg (2006). https://doi.org/
10.1007/11817963_20

52. Wei, O., Gurfinkel, A., Chechik, M.: On the consistency, expressiveness, and precision
of partial modeling formalisms. Information and Computation 209(1), 20–47 (2011).
https://doi.org/10.1016/j.ic.2010.08.001

53. Yang, J., Seger, C.J.: Introduction to generalized symbolic trajectory evaluation.
In: Proceedings 2001 IEEE International Conference on Computer Design: VLSI
in Computers and Processors. ICCD 2001. pp. 360–365 (2001). https://doi.org/10.
1109/ICCD.2001.955052

https://doi.org/10.1007/978-3-030-94583-1_12
https://doi.org/10.1007/978-3-030-94583-1_12
https://doi.org/10/qdm8
https://doi.org/10/qdm8
https://doi.org/10.1109/SIES.2009.5196212
https://doi.org/10.1109/SIES.2009.5196212
https://github.com/rems-project/islaris
https://github.com/rems-project/islaris
https://doi.org/10.1145/3519939.3523434
https://doi.org/10.1145/3519939.3523434
https://doi.org/10.1109/ISoLA.2006.62
https://doi.org/10.1109/ISoLA.2006.62
https://doi.org/10/bm83n7
https://doi.org/10/bm83n7
https://doi.org/10.1007/978-3-540-45069-6_28
https://doi.org/10.1007/978-3-540-45069-6_28
https://doi.org/10.1007/978-3-540-45069-6_28
https://doi.org/10.1007/978-3-540-45069-6_28
https://doi.org/10.1007/978-3-540-24730-2_40
https://doi.org/10.1007/978-3-540-24730-2_40
https://doi.org/10.1007/978-3-540-24730-2_40
https://doi.org/10.1007/978-3-540-24730-2_40
https://doi.org/10.1016/j.ic.2008.07.004
https://doi.org/10.1016/j.ic.2008.07.004
https://doi.org/10.1016/j.ic.2008.07.004
https://doi.org/10.1016/j.ic.2008.07.004
https://unsat.cs.washington.edu/projects/serval/
https://unsat.cs.washington.edu/projects/serval/
https://doi.org/10.1007/11817963_20
https://doi.org/10.1007/11817963_20
https://doi.org/10.1007/11817963_20
https://doi.org/10.1007/11817963_20
https://doi.org/10.1016/j.ic.2010.08.001
https://doi.org/10.1016/j.ic.2010.08.001
https://doi.org/10.1109/ICCD.2001.955052
https://doi.org/10.1109/ICCD.2001.955052
https://doi.org/10.1109/ICCD.2001.955052
https://doi.org/10.1109/ICCD.2001.955052

	 Input-based  Three-Valued Abstraction Refinement 

