
Input-based Three-Valued Abstraction Refinement

Jan Onderka1,2,3 & Stefan Ratschan2

1 Faculty of Engineering, University of Freiburg
2 Institute of Computer Science, The Czech Academy of Sciences

3 Faculty of Information Technology, Czech Technical University in Prague

1onderka@cs.uni-freiburg.de

2026-01-13

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 1 / 20

mailto:onderka@cs.uni-freiburg.de

Temporal logics for model checking

µ-calculus

CTL*
linear-time
µ-calculus

CTL ACTL*

ACTL LTL

(strongest)

Classic model checking: can verify all properties of µ-calculus
Scales poorly unless abstraction refinement is used

Usually: Counterexample-guided Abstraction Refinement (CEGAR)
▶ Huge success for path-universal logics
▶ Cannot verify logics in bold
▶ Should we care about this?

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 2 / 20

Motivation: recovery properties 1/2

Long-running (embedded/CLI/GUI. . .) program with main loop:

fn main () {
. . .
loop {

// wa i t u n t i l the u s e r p r e s s e s a but ton
whi le (b u t t o n n o t p r e s s e d ()) {}
// per fo rm some a c t i o n
l a b e l : do someth ing () ;
. . .

}
}

Possible bug: infinite loop somewhere in the program

i f c omp l i c a t e d p r e r e q u i s i t e s () {
loop {}

}

We want this (intuitively): “no matter where we are in the program,
we can reach label somehow”

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 3 / 20

Motivation: recovery properties 2/2

fn main () {
. . .
loop {

. . .
whi le (b u t t o n n o t p r e s s e d ()) {}
l a b e l : do someth ing () ;
. . .

}
}

AG[EF[label]]: From every state, we can eventually reach label
with some sequence of inputs (“recovery” / no loss of capability)

▶ Computation Tree Logic (CTL) property, not path-universal

Simple path-universal AF[label], AGF[label], . . . not helpful here
▶ Do not hold even without bug (can run without button ever pressed)

Useful properties not verifiable by CEGAR

Input-based Three-valued Abstraction Refinement: using a recovery
property, we were able to to find a bug in a real-life program

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 4 / 20

Counterexample-guided Abstraction Refinement (CEGAR)

system, path-universal property ϕ

generate overapproximating

Kripke structure K̂

K̂
???

|= ϕ

holds

replay
counterexample

refine information

does not hold

false
true

spurious

valid

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 5 / 20

Three-valued Abstraction Refinement (TVAR)

system, µ-calculus property ϕ

generate partial structure K̂

K̂
???

|= ϕ

refine information

holds does not hold

unknown (X)

false (0)true (1)

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 6 / 20

TVAR frameworks and tools

Various TVAR frameworks introduced 2001–2011
▶ Theoretically and practically complicated

Nowadays: many CEGAR tools, no practically used TVAR tools

Blind spots in verification and design
▶ Why consider a property you cannot verify?

How can we improve on this?

Introduced a new TVAR framework simpler than previous ones

Implemented a tool machine-check supporting µ-calculus
Found a bug in a real-life program using a recovery property

To explain the framework, we need to go deeper. . .

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 7 / 20

TVAR frameworks and tools

Various TVAR frameworks introduced 2001–2011
▶ Theoretically and practically complicated

Nowadays: many CEGAR tools, no practically used TVAR tools

Blind spots in verification and design
▶ Why consider a property you cannot verify?

How can we improve on this?

Introduced a new TVAR framework simpler than previous ones

Implemented a tool machine-check supporting µ-calculus
Found a bug in a real-life program using a recovery property

To explain the framework, we need to go deeper. . .

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 7 / 20

Example system

000start 001

011

010

111

110

100 101

0

1

0,1

0,1

1
0

0

1
0

1

0,1

0,1

Automaton with labelling msb (most significant bit)

Property: AG[EF[msb = 0]], i.e. we can always recover to msb = 0

The system is buggy: if the first input is 1, we will not be able to
recover from 111, 100, 101

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 8 / 20

Classic model checking

000start 001

011

010

111

110

100 101

Turn the automaton into a Kripke structure by forgetting inputs

Can compute AG[EF[msb = 0]] does not hold

. . . but needs to consider all states

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 9 / 20

CEGAR: abstracting the state space

000start 001

011

010

111

110

100 101

CEGAR overapproximates
▶ states by abstract states (X ≈ can be 0 or 1)
▶ transitions by may-transitions (drawn dashed)

Cannot prove existence of paths within abstraction!

(a) Before refinement

XXXstart

(b) After splitting states

0XXstart 1XX

0XX → 0XX has to be a may-transition due to e.g. 000 → 001

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 10 / 20

Previous TVAR frameworks

000start 001

011

010

111

110

100 101

Must-transition (drawn solid): all states within an abstract state must
have a transition to a state within the successive abstract state

(a) Before refinement

XXXstart

(b) After splitting states

0XXstart 1XX

0XX → 0XX cannot be a must-transition due to 011 → 111
Example: can no longer prove any successor exists after refinement

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 11 / 20

Previous TVAR frameworks: monotonicity woes

Frameworks with may-transitions + must-transitions can lose
provable properties after refinement (non-monotonicity)

Monotone frameworks: more complicated structures

Kripke Modal
Transition Structure

(KMTS)

0XXstart 1XX

Generalised KMTS

0XXstart 1XX

Mixed TS

0XXstart 1XX

XXX

This is necessary due to splitting states.

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 12 / 20

Input-based TVAR 1/4: abstract simulation

Back to the automaton

000start 001

011

010

111

110

100 101

0

1

0,1

0,1

1
0

0

1
0

1

0,1

0,1

Use abstract simulation to compute successive states

Initially with all inputs unknown:

000start 0X1 X1X XXX
X X X

X

No may/must transitions needed

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 13 / 20

Input-based TVAR 2/4: input splitting

Refinement: Split inputs instead of states

Before refinement:

000start 0X1 X1X XXX
X X X

X

After splitting input from 000,
AG[EF[msb = 0]] does not hold:

000start 001

011

010

111

X10

10X

0

1

X

X

X

X

X

X

No may/must transitions needed
Partial Kripke Structure, no monotonicity woes

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 14 / 20

Input-based TVAR 3/4: state decay

New problem: abstract state space unnecessarily big
to compute e.g. msb = 0 in initial state

000start 0X1 X1X XXX
X X X

X

Solution: allow decaying abstract states
to overapproximate more during abstract simulation

000start XXX
X, decay to XXX

X

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 15 / 20

Input-based TVAR 4/4: putting it together

Refinement by input splitting and lessening decay

States: existential abstraction
▶ Can use Abstract Interpretation to compute abstract simulation

Proven sufficient requirements for
▶ soundness (if we get a result, it is correct)
▶ monotonicity (provable properties stay provable)
▶ completeness (we get a result in finite time)

Good choice of abstract domains and refinements crucial

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 16 / 20

Instantiating tool: machine-check

Automatic verification of digital systems
▶ System descriptions: strict subset of the Rust language
▶ Specification properties: µ-calculus

Explicit-state model checking

Three-valued bit-vector abstraction domain + others optional

Targeted especially to machine-code verification
▶ Proofs of concept: AVR and RISC-V machine-code systems

https://machine-check.org

Apache 2.0 / MIT

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 17 / 20

https://machine-check.org
https://machine-check.org

Experimental evaluation

16 machine-code programs for AVR ATmega328P verified

Using a recovery property, found a bug in a program for
Voltage-Controlled Oscillator calibration

▶ bug in calibration based on binary search
▶ sneaky: loss of calibration accuracy without being obvious

Property Holds Refin. States Transitions CPU t. [s] Mem. [MB]

Inherent (AG[w]) ✓ 513 13059 13573 17.09 87.39

Recovery (AF[AG[w]]) ✗ 513 13059 13573 19.88 111.34

AFG[w] as µX . νY . [X] ∨ (w ∧ [Y]) 1 ✓ 513 13059 13573 672.05 160.58

AFG[w] as µX . νY . [X] ∨ (w ∧ [Y]) 1* ✓ 513 13059 13573 17.98 115.34

Even non-starts (νX . w ∧ [[X]]) 2 ✗ 0 17 18 <0.01 3.78

Stack above 0x08FD (AG[w]) ✓ 513 13059 13573 17.08 87.30

Stack above 0x08FE (AG[w]) ✗ 0 17 18 <0.01 3.94

1In µ-calculus, LTL, and CTL*, not in CTL
2In µ-calculus, not in CTL*

* Guiding abstract state space generation by inherent property

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 18 / 20

Current & future work

Ongoing work on machine-check
▶ E.g. new RISC-V system implementation (December)

Relative simplicity of framework invites extensions
▶ Parametric systems implemented in machine-check

Transfer of ideas between SAT/SMT/QBF solving and model
checking

▶ CEGAR tools can solve SAT problems
▶ TVAR tools can solve QBF problems
▶ Parallels between abstraction refinement and DPLL solvers

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 19 / 20

Conclusion

New abstraction-refinement framework for µ-calculus verification
▶ Splitting using inputs: no problems with transitions

Works in practice, as evidenced by machine-check
▶ More work needs to be done for industrial usability

Verification benchmarks and competitions currently focus on
path-universal properties

▶ Now we can do more, as we can have the tools!

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 20 / 20

