Input-based Three-Valued Abstraction Refinement

Jan Onderkal?23 & Stefan Ratschan?

! Faculty of Engineering, University of Freiburg
2 Institute of Computer Science, The Czech Academy of Sciences
® Faculty of Information Technology, Czech Technical University in Prague

Londerka@cs.uni-freiburg.de

2026-01-13

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 1/20

mailto:onderka@cs.uni-freiburg.de

Temporal logics for model checking

p- calculus (strongest)
/ linear-time
CTL* |
/ \ p-calculus
CTL ACTL*
ACTL

@ Classic model checking: can verify all properties of p-calculus
@ Scales poorly unless abstraction refinement is used

@ Usually: Counterexample-guided Abstraction Refinement (CEGAR)

» Huge success for path-universal logics
» Cannot verify logics in bold
» Should we care about this?

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 2/20

Motivation: recovery properties 1/2

@ Long-running (embedded/CLI/GUI...) program with main loop:
fn main() {
loop {
// wait until the user presses a button
while (button_not_pressed()) {}

// perform some action
label: do_something();

}

@ Possible bug: infinite loop somewhere in the program

if complicated_prerequisites() {

loop {}
}

@ We want this (intuitively): “no matter where we are in the program,
we can reach label somehow"

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 3/20

Motivation: recovery properties 2/2
fn main() {
loop {
while (button_ not pressed()) {}
label : do_something();

}

o AG[EF[label]]: From every state, we can eventually reach label
with some sequence of inputs (“recovery” / no loss of capability)

» Computation Tree Logic (CTL) property, not path-universal
e Simple path-universal AF[label], AGF[label], ... not helpful here
» Do not hold even without bug (can run without button ever pressed)
o Useful properties not verifiable by CEGAR

@ Input-based Three-valued Abstraction Refinement: using a recovery
property, we were able to to find a bug in a real-life program

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 4/20

Counterexample-guided Abstraction Refinement (CEGAR)

system, path-universal property ¢

generate overapproximating
Kripke structure K

refine information

spurious

replay
counterexample

valid

does not hold

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 5/20

Three-valued Abstraction Refinement (TVAR)

system, p-calculus property (,25’

generate partial structure K refine information

unknown (X)

false (0)
does not hold

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 6/20

TVAR frameworks and tools

@ Various TVAR frameworks introduced 2001-2011
» Theoretically and practically complicated

@ Nowadays: many CEGAR tools, no practically used TVAR tools
@ Blind spots in verification and design
» Why consider a property you cannot verify?

@ How can we improve on this?

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 7/20

TVAR frameworks and tools

@ Various TVAR frameworks introduced 2001-2011
» Theoretically and practically complicated

@ Nowadays: many CEGAR tools, no practically used TVAR tools

@ Blind spots in verification and design
» Why consider a property you cannot verify?

@ How can we improve on this?

@ Introduced a new TVAR framework simpler than previous ones
@ Implemented a tool machine-check supporting p-calculus

@ Found a bug in a real-life program using a recovery property

To explain the framework, we need to go deeper. ..

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 7/20

Example system

start

e Automaton with labelling msb (most significant bit)
o Property: AG[EF[msb = 0]], i.e. we can always recover to msb = 0

@ The system is buggy: if the first input is 1, we will not be able to
recover from 111, 100, 101

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 8/20

Classic model checking

start

SRR

@ Turn the automaton into a Kripke structure by forgetting inputs
e Can compute AG[EF[msb = 0]] does not hold

@ ...but needs to consider all states

Jan Onderka & Stefan Ratschan Input-based TVAR

CEGAR: abstracting

start

the state space

SRR

o CEGAR overapproximates

> states by abstract

states (X = can be 0 or 1)

» transitions by may-transitions (drawn dashed)

@ Cannot prove existence of paths within abstraction!

(a) Before refinement (b) After splitting states

start —>XXX

s G0,
€ — - =
l-l lvl

0XX — 0XX has to be a may-transition due to e.g. 000 — 001

Jan Onderka & Stefan Ratschan

Input-based TVAR 2026-01-13 10/20

Previous TVAR frameworks

start

W

Must-transition (drawn solid): all states within an abstract state must
have a transition to a state within the successive abstract state

(a) Before refinement (b) After splitting states

start —|

XXX

o o 0,
L) [

0XX — 0XX cannot be a must-transition due to 011 — 111
Example: can no longer prove any successor exists after refinement

Jan Onderka & Stefan Ratschan

Input-based TVAR 2026-01-13 11/20

Previous TVAR frameworks: monotonicity woes

@ Frameworks with may-transitions + must-transitions can lose
provable properties after refinement (non-monotonicity)

@ Monotone frameworks: more complicated structures

Kripke Modal Generalised KMTS Mixed TS

Transition Structure tart -
(KMTS) start —| star l‘“’
start »-:“- XXX

This is necessary due to splitting states.

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 12 /20

Input-based TVAR 1/4: abstract simulation

Back to the automaton

start

Use abstract simulation to compute successive states

Initially with all inputs unknown:

X

start' X - X X1X

XXX

o X

No may/must transitions needed

Jan Onderka & Stefan Ratschan Input-based TVAR

2026-01-13

13/20

Input-based TVAR 2/4: input splitting

Refinement: Split inputs instead of states

start—». X - X X1X

start

Before refinement:

X

XXX[DO X

After splitting input from 000,
AG[EF[msb = 0]] does not hold:

0.X-X

> X

No may/must transitions needed
Partial Kripke Structure, no monotonicity woes

Jan Onderka & Stefan Ratschan

Input-based TVAR

2026-01-13

14 /20

Input-based TVAR 3/4: state decay

New problem: abstract state space unnecessarily big
to compute e.g. msb = 0 in initial state

X

start—». X . X X1X

XXX

o X

Solution: allow decaying abstract states
to overapproximate more during abstract simulation

X, decay to XXX
st [

Jan Onderka & Stefan Ratschan Input-based TVAR

XXX

> X

2026-01-13

15/20

Input-based TVAR 4/4: putting it together

Refinement by input splitting and lessening decay
o States: existential abstraction

» Can use Abstract Interpretation to compute abstract simulation
@ Proven sufficient requirements for

» soundness (if we get a result, it is correct)
» monotonicity (provable properties stay provable)
» completeness (we get a result in finite time)

Good choice of abstract domains and refinements crucial

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 16 / 20

Instantiating tool: machine-check

@ Automatic verification of digital systems

» System descriptions: strict subset of the Rust language
» Specification properties: p-calculus

@ Explicit-state model checking
@ Three-valued bit-vector abstraction domain + others optional

o Targeted especially to machine-code verification
» Proofs of concept: AVR and RISC-V machine-code systems

https://machine-check.org
Apache 2.0 / MIT
2026-01-13 17/20

https://machine-check.org
https://machine-check.org

Experimental evaluation

@ 16 machine-code programs for AVR ATmega328P verified

@ Using a recovery property, found a bug in a program for
Voltage-Controlled Oscillator calibration
> bug in calibration based on binary search
» sneaky: loss of calibration accuracy without being obvious

Property Holds | Refin. | States | Transitions| CPU t. [s] | Mem. [MB]

Inherent (AG[w]) v | 513 [13059| 13573 17.09 87.39

Recovery (AF[AG[w]]) X 513 13059 | 13573 19.88 111.34

AFG[w] as uX . vY . [X]V(wA[YD Y| v | 513 |13059| 13573 | 672.05 160.58

AFG[w] as uX . vY . [X]V (wA[Y]) **| v | 513 |13059| 13573 17.98 115.34
Even non-starts (vX . w A [[X]]) 2 X 0 17 18 <0.01 3.78
Stack above 0x08FD (AG[w]) v/ | 513 |13059| 13573 17.08 87.30
Stack above 0x08FE (AG[w]) X 0 17 18 <0.01 3.94

YIn p-calculus, LTL, and CTL*, not in CTL
2|n p-caleulus, not in CTL*
* Guiding abstract state space generation by inherent property

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 18 /20

Current & future work

@ Ongoing work on machine-check
» E.g. new RISC-V system implementation (December)
@ Relative simplicity of framework invites extensions
» Parametric systems implemented in machine-check
o Transfer of ideas between SAT/SMT /QBF solving and model
checking
» CEGAR tools can solve SAT problems

» TVAR tools can solve QBF problems
» Parallels between abstraction refinement and DPLL solvers

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 19 /20

Conclusion

@ New abstraction-refinement framework for p-calculus verification
» Splitting using inputs: no problems with transitions

@ Works in practice, as evidenced by machine-check
» More work needs to be done for industrial usability

@ Verification benchmarks and competitions currently focus on
path-universal properties

» Now we can do more, as we can have the tools!

Jan Onderka & Stefan Ratschan Input-based TVAR 2026-01-13 20/20

